|
|
|
@ -50,7 +50,7 @@ |
|
|
|
|
|
|
|
|
|
using namespace cv; |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
template <typename T, typename IT, typename UIT> |
|
|
|
|
struct FastNlMeansMultiDenoisingInvoker : |
|
|
|
|
ParallelLoopBody |
|
|
|
|
{ |
|
|
|
@ -81,21 +81,21 @@ private: |
|
|
|
|
int search_window_half_size_; |
|
|
|
|
int temporal_window_half_size_; |
|
|
|
|
|
|
|
|
|
int fixed_point_mult_; |
|
|
|
|
IT fixed_point_mult_; |
|
|
|
|
int almost_template_window_size_sq_bin_shift; |
|
|
|
|
std::vector<int> almost_dist2weight; |
|
|
|
|
std::vector<IT> almost_dist2weight; |
|
|
|
|
|
|
|
|
|
void calcDistSumsForFirstElementInRow(int i, Array3d<int>& dist_sums, |
|
|
|
|
Array4d<int>& col_dist_sums, |
|
|
|
|
Array4d<int>& up_col_dist_sums) const; |
|
|
|
|
void calcDistSumsForFirstElementInRow(int i, Array3d<IT>& dist_sums, |
|
|
|
|
Array4d<IT>& col_dist_sums, |
|
|
|
|
Array4d<IT>& up_col_dist_sums) const; |
|
|
|
|
|
|
|
|
|
void calcDistSumsForElementInFirstRow(int i, int j, int first_col_num, |
|
|
|
|
Array3d<int>& dist_sums, Array4d<int>& col_dist_sums, |
|
|
|
|
Array4d<int>& up_col_dist_sums) const; |
|
|
|
|
Array3d<IT>& dist_sums, Array4d<IT>& col_dist_sums, |
|
|
|
|
Array4d<IT>& up_col_dist_sums) const; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker( |
|
|
|
|
template <class T, typename IT, typename UIT> |
|
|
|
|
FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::FastNlMeansMultiDenoisingInvoker( |
|
|
|
|
const std::vector<Mat>& srcImgs, |
|
|
|
|
int imgToDenoiseIndex, |
|
|
|
|
int temporalWindowSize, |
|
|
|
@ -125,8 +125,9 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker( |
|
|
|
|
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT); |
|
|
|
|
|
|
|
|
|
main_extended_src_ = extended_srcs_[temporal_window_half_size_]; |
|
|
|
|
const int max_estimate_sum_value = temporal_window_size_ * search_window_size_ * search_window_size_ * 255; |
|
|
|
|
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value; |
|
|
|
|
const IT max_estimate_sum_value = |
|
|
|
|
(IT)temporal_window_size_ * (IT)search_window_size_ * (IT)search_window_size_ * 255; |
|
|
|
|
fixed_point_mult_ = std::numeric_limits<IT>::max() / max_estimate_sum_value; |
|
|
|
|
|
|
|
|
|
// precalc weight for every possible l2 dist between blocks
|
|
|
|
|
// additional optimization of precalced weights to replace division(averaging) by binary shift
|
|
|
|
@ -138,7 +139,7 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker( |
|
|
|
|
int almost_template_window_size_sq = 1 << almost_template_window_size_sq_bin_shift; |
|
|
|
|
double almost_dist2actual_dist_multiplier = (double) almost_template_window_size_sq / template_window_size_sq; |
|
|
|
|
|
|
|
|
|
int max_dist = 255 * 255 * sizeof(T); |
|
|
|
|
IT max_dist = 255 * 255 * sizeof(T); |
|
|
|
|
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1); |
|
|
|
|
almost_dist2weight.resize(almost_max_dist); |
|
|
|
|
|
|
|
|
@ -146,7 +147,7 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker( |
|
|
|
|
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++) |
|
|
|
|
{ |
|
|
|
|
double dist = almost_dist * almost_dist2actual_dist_multiplier; |
|
|
|
|
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T)))); |
|
|
|
|
IT weight = (IT)round(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T)))); |
|
|
|
|
|
|
|
|
|
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_) |
|
|
|
|
weight = 0; |
|
|
|
@ -160,19 +161,19 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker( |
|
|
|
|
dst_ = Mat::zeros(srcImgs[0].size(), srcImgs[0].type()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const |
|
|
|
|
template <class T, typename IT, typename UIT> |
|
|
|
|
void FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::operator() (const Range& range) const |
|
|
|
|
{ |
|
|
|
|
int row_from = range.start; |
|
|
|
|
int row_to = range.end - 1; |
|
|
|
|
|
|
|
|
|
Array3d<int> dist_sums(temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
|
Array3d<IT> dist_sums(temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
|
|
|
|
|
|
// for lazy calc optimization
|
|
|
|
|
Array4d<int> col_dist_sums(template_window_size_, temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
|
Array4d<IT> col_dist_sums(template_window_size_, temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
|
|
|
|
|
|
int first_col_num = -1; |
|
|
|
|
Array4d<int> up_col_dist_sums(cols_, temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
|
Array4d<IT> up_col_dist_sums(cols_, temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
|
|
|
|
|
|
for (int i = row_from; i <= row_to; i++) |
|
|
|
|
{ |
|
|
|
@ -216,15 +217,15 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const |
|
|
|
|
for (int d = 0; d < temporal_window_size_; d++) |
|
|
|
|
{ |
|
|
|
|
Mat cur_extended_src = extended_srcs_[d]; |
|
|
|
|
Array2d<int> cur_dist_sums = dist_sums[d]; |
|
|
|
|
Array2d<int> cur_col_dist_sums = col_dist_sums[first_col_num][d]; |
|
|
|
|
Array2d<int> cur_up_col_dist_sums = up_col_dist_sums[j][d]; |
|
|
|
|
Array2d<IT> cur_dist_sums = dist_sums[d]; |
|
|
|
|
Array2d<IT> cur_col_dist_sums = col_dist_sums[first_col_num][d]; |
|
|
|
|
Array2d<IT> cur_up_col_dist_sums = up_col_dist_sums[j][d]; |
|
|
|
|
for (int y = 0; y < search_window_size; y++) |
|
|
|
|
{ |
|
|
|
|
int* dist_sums_row = cur_dist_sums.row_ptr(y); |
|
|
|
|
IT* dist_sums_row = cur_dist_sums.row_ptr(y); |
|
|
|
|
|
|
|
|
|
int* col_dist_sums_row = cur_col_dist_sums.row_ptr(y); |
|
|
|
|
int* up_col_dist_sums_row = cur_up_col_dist_sums.row_ptr(y); |
|
|
|
|
IT* col_dist_sums_row = cur_col_dist_sums.row_ptr(y); |
|
|
|
|
IT* up_col_dist_sums_row = cur_up_col_dist_sums.row_ptr(y); |
|
|
|
|
|
|
|
|
|
const T* b_up_ptr = cur_extended_src.ptr<T>(start_by - template_window_half_size_ - 1 + y); |
|
|
|
|
const T* b_down_ptr = cur_extended_src.ptr<T>(start_by + template_window_half_size_ + y); |
|
|
|
@ -234,7 +235,7 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const |
|
|
|
|
dist_sums_row[x] -= col_dist_sums_row[x]; |
|
|
|
|
|
|
|
|
|
col_dist_sums_row[x] = up_col_dist_sums_row[x] + |
|
|
|
|
calcUpDownDist(a_up, a_down, b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]); |
|
|
|
|
calcUpDownDist<T, IT>(a_up, a_down, b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]); |
|
|
|
|
|
|
|
|
|
dist_sums_row[x] += col_dist_sums_row[x]; |
|
|
|
|
up_col_dist_sums_row[x] = col_dist_sums_row[x]; |
|
|
|
@ -247,9 +248,9 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// calc weights
|
|
|
|
|
int weights_sum = 0; |
|
|
|
|
IT weights_sum = 0; |
|
|
|
|
|
|
|
|
|
int estimation[3]; |
|
|
|
|
IT estimation[3]; |
|
|
|
|
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) |
|
|
|
|
estimation[channel_num] = 0; |
|
|
|
|
|
|
|
|
@ -260,33 +261,33 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const |
|
|
|
|
{ |
|
|
|
|
const T* cur_row_ptr = esrc_d.ptr<T>(border_size_ + search_window_y + y); |
|
|
|
|
|
|
|
|
|
int* dist_sums_row = dist_sums.row_ptr(d, y); |
|
|
|
|
IT* dist_sums_row = dist_sums.row_ptr(d, y); |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < search_window_size_; x++) |
|
|
|
|
{ |
|
|
|
|
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift; |
|
|
|
|
int almostAvgDist = (int)(dist_sums_row[x] >> almost_template_window_size_sq_bin_shift); |
|
|
|
|
|
|
|
|
|
int weight = almost_dist2weight[almostAvgDist]; |
|
|
|
|
IT weight = almost_dist2weight[almostAvgDist]; |
|
|
|
|
weights_sum += weight; |
|
|
|
|
|
|
|
|
|
T p = cur_row_ptr[border_size_ + search_window_x + x]; |
|
|
|
|
incWithWeight(estimation, weight, p); |
|
|
|
|
incWithWeight<T, IT>(estimation, weight, p); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) |
|
|
|
|
estimation[channel_num] = ((unsigned)estimation[channel_num] + weights_sum / 2) / weights_sum; |
|
|
|
|
estimation[channel_num] = (static_cast<UIT>(estimation[channel_num]) + weights_sum / 2) / weights_sum; // ????
|
|
|
|
|
|
|
|
|
|
dst_.at<T>(i,j) = saturateCastFromArray<T>(estimation); |
|
|
|
|
dst_.at<T>(i,j) = saturateCastFromArray<T, IT>(estimation); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRow( |
|
|
|
|
int i, Array3d<int>& dist_sums, Array4d<int>& col_dist_sums, Array4d<int>& up_col_dist_sums) const |
|
|
|
|
template <class T, typename IT, typename UIT> |
|
|
|
|
inline void FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::calcDistSumsForFirstElementInRow( |
|
|
|
|
int i, Array3d<IT>& dist_sums, Array4d<IT>& col_dist_sums, Array4d<IT>& up_col_dist_sums) const |
|
|
|
|
{ |
|
|
|
|
int j = 0; |
|
|
|
|
|
|
|
|
@ -303,14 +304,14 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo |
|
|
|
|
int start_y = i + y - search_window_half_size_; |
|
|
|
|
int start_x = j + x - search_window_half_size_; |
|
|
|
|
|
|
|
|
|
int* dist_sums_ptr = &dist_sums[d][y][x]; |
|
|
|
|
int* col_dist_sums_ptr = &col_dist_sums[0][d][y][x]; |
|
|
|
|
IT* dist_sums_ptr = &dist_sums[d][y][x]; |
|
|
|
|
IT* col_dist_sums_ptr = &col_dist_sums[0][d][y][x]; |
|
|
|
|
int col_dist_sums_step = col_dist_sums.step_size(0); |
|
|
|
|
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++) |
|
|
|
|
{ |
|
|
|
|
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) |
|
|
|
|
{ |
|
|
|
|
int dist = calcDist<T>( |
|
|
|
|
IT dist = calcDist<T, IT>( |
|
|
|
|
main_extended_src_.at<T>(border_size_ + i + ty, border_size_ + j + tx), |
|
|
|
|
cur_extended_src.at<T>(border_size_ + start_y + ty, border_size_ + start_x + tx)); |
|
|
|
|
|
|
|
|
@ -325,10 +326,10 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRow( |
|
|
|
|
int i, int j, int first_col_num, Array3d<int>& dist_sums, |
|
|
|
|
Array4d<int>& col_dist_sums, Array4d<int>& up_col_dist_sums) const |
|
|
|
|
template <class T, typename IT, typename UIT> |
|
|
|
|
inline void FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::calcDistSumsForElementInFirstRow( |
|
|
|
|
int i, int j, int first_col_num, Array3d<IT>& dist_sums, |
|
|
|
|
Array4d<IT>& col_dist_sums, Array4d<IT>& up_col_dist_sums) const |
|
|
|
|
{ |
|
|
|
|
int ay = border_size_ + i; |
|
|
|
|
int ax = border_size_ + j + template_window_half_size_; |
|
|
|
@ -350,10 +351,10 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo |
|
|
|
|
int by = start_by + y; |
|
|
|
|
int bx = start_bx + x; |
|
|
|
|
|
|
|
|
|
int* col_dist_sums_ptr = &col_dist_sums[new_last_col_num][d][y][x]; |
|
|
|
|
IT* col_dist_sums_ptr = &col_dist_sums[new_last_col_num][d][y][x]; |
|
|
|
|
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) |
|
|
|
|
{ |
|
|
|
|
*col_dist_sums_ptr += calcDist<T>( |
|
|
|
|
*col_dist_sums_ptr += calcDist<T, IT>( |
|
|
|
|
main_extended_src_.at<T>(ay + ty, ax), |
|
|
|
|
cur_extended_src.at<T>(by + ty, bx)); |
|
|
|
|
} |
|
|
|
|