Refactoring in preparation for 16-bit implementation of fastNlMeansDenoising

pull/3814/head
Erik Karlsson 10 years ago
parent 5466e321b8
commit e178294b49
  1. 12
      modules/photo/src/denoising.cpp
  2. 86
      modules/photo/src/fast_nlmeans_denoising_invoker.hpp
  3. 180
      modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
  4. 93
      modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp

@ -65,17 +65,17 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
switch (src.type()) {
case CV_8U:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar>(
FastNlMeansDenoisingInvoker<uchar, int, unsigned int>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b>(
FastNlMeansDenoisingInvoker<cv::Vec2b, int, unsigned int>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b>(
FastNlMeansDenoisingInvoker<cv::Vec3b, int, unsigned int>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
default:
@ -175,19 +175,19 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar>(
FastNlMeansMultiDenoisingInvoker<uchar, int, unsigned int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b>(
FastNlMeansMultiDenoisingInvoker<cv::Vec2b, int, unsigned int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b>(
FastNlMeansMultiDenoisingInvoker<cv::Vec3b, int, unsigned int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;

@ -50,7 +50,7 @@
using namespace cv;
template <typename T>
template <typename T, typename IT, typename UIT>
struct FastNlMeansDenoisingInvoker :
public ParallelLoopBody
{
@ -75,20 +75,20 @@ private:
int template_window_half_size_;
int search_window_half_size_;
int fixed_point_mult_;
IT fixed_point_mult_;
int almost_template_window_size_sq_bin_shift_;
std::vector<int> almost_dist2weight_;
std::vector<IT> almost_dist2weight_;
void calcDistSumsForFirstElementInRow(
int i, Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
int i, Array2d<IT>& dist_sums,
Array3d<IT>& col_dist_sums,
Array3d<IT>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(
int i, int j, int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
Array2d<IT>& dist_sums,
Array3d<IT>& col_dist_sums,
Array3d<IT>& up_col_dist_sums) const;
};
inline int getNearestPowerOf2(int value)
@ -99,8 +99,8 @@ inline int getNearestPowerOf2(int value)
return p;
}
template <class T>
FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
template <class T, typename IT, typename UIT>
FastNlMeansDenoisingInvoker<T, IT, UIT>::FastNlMeansDenoisingInvoker(
const Mat& src, Mat& dst,
int template_window_size,
int search_window_size,
@ -117,8 +117,8 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
border_size_ = search_window_half_size_ + template_window_half_size_;
copyMakeBorder(src_, extended_src_, border_size_, border_size_, border_size_, border_size_, BORDER_DEFAULT);
const int max_estimate_sum_value = search_window_size_ * search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value;
const IT max_estimate_sum_value = (IT)search_window_size_ * (IT)search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<IT>::max() / max_estimate_sum_value;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
@ -127,7 +127,7 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
almost_template_window_size_sq_bin_shift_ = getNearestPowerOf2(template_window_size_sq);
double almost_dist2actual_dist_multiplier = ((double)(1 << almost_template_window_size_sq_bin_shift_)) / template_window_size_sq;
int max_dist = 255 * 255 * sizeof(T);
IT max_dist = 255 * 255 * sizeof(T);
int almost_max_dist = (int)(max_dist / almost_dist2actual_dist_multiplier + 1);
almost_dist2weight_.resize(almost_max_dist);
@ -135,7 +135,7 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++)
{
double dist = almost_dist * almost_dist2actual_dist_multiplier;
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
IT weight = (IT)round(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_)
weight = 0;
@ -149,21 +149,21 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
dst_ = Mat::zeros(src_.size(), src_.type());
}
template <class T>
void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
template <class T, typename IT, typename UIT>
void FastNlMeansDenoisingInvoker<T, IT, UIT>::operator() (const Range& range) const
{
int row_from = range.start;
int row_to = range.end - 1;
// sums of cols anf rows for current pixel p
Array2d<int> dist_sums(search_window_size_, search_window_size_);
Array2d<IT> dist_sums(search_window_size_, search_window_size_);
// for lazy calc optimization (sum of cols for current pixel)
Array3d<int> col_dist_sums(template_window_size_, search_window_size_, search_window_size_);
Array3d<IT> col_dist_sums(template_window_size_, search_window_size_, search_window_size_);
int first_col_num = -1;
// last elements of column sum (for each element in row)
Array3d<int> up_col_dist_sums(src_.cols, search_window_size_, search_window_size_);
Array3d<IT> up_col_dist_sums(src_.cols, search_window_size_, search_window_size_);
for (int i = row_from; i <= row_to; i++)
{
@ -202,9 +202,9 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
for (int y = 0; y < search_window_size; y++)
{
int * dist_sums_row = dist_sums.row_ptr(y);
int * col_dist_sums_row = col_dist_sums.row_ptr(first_col_num, y);
int * up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
IT * dist_sums_row = dist_sums.row_ptr(y);
IT * col_dist_sums_row = col_dist_sums.row_ptr(first_col_num, y);
IT * up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
const T * b_up_ptr = extended_src_.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T * b_down_ptr = extended_src_.ptr<T>(start_by + template_window_half_size_ + y);
@ -215,7 +215,7 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
dist_sums_row[x] -= col_dist_sums_row[x];
int bx = start_bx + x;
col_dist_sums_row[x] = up_col_dist_sums_row[x] + calcUpDownDist(a_up, a_down, b_up_ptr[bx], b_down_ptr[bx]);
col_dist_sums_row[x] = up_col_dist_sums_row[x] + calcUpDownDist<T, IT>(a_up, a_down, b_up_ptr[bx], b_down_ptr[bx]);
dist_sums_row[x] += col_dist_sums_row[x];
up_col_dist_sums_row[x] = col_dist_sums_row[x];
@ -227,39 +227,39 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
}
// calc weights
int estimation[3], weights_sum = 0;
IT estimation[3], weights_sum = 0;
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = 0;
for (int y = 0; y < search_window_size_; y++)
{
const T* cur_row_ptr = extended_src_.ptr<T>(border_size_ + search_window_y + y);
int* dist_sums_row = dist_sums.row_ptr(y);
IT* dist_sums_row = dist_sums.row_ptr(y);
for (int x = 0; x < search_window_size_; x++)
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
int weight = almost_dist2weight_[almostAvgDist];
int almostAvgDist = (int)(dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_);
IT weight = almost_dist2weight_[almostAvgDist];
weights_sum += weight;
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight(estimation, weight, p);
incWithWeight<T, IT>(estimation, weight, p);
}
}
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = ((unsigned)estimation[channel_num] + weights_sum/2) / weights_sum;
estimation[channel_num] = (static_cast<UIT>(estimation[channel_num]) + weights_sum/2) / weights_sum;
dst_.at<T>(i,j) = saturateCastFromArray<T>(estimation);
dst_.at<T>(i,j) = saturateCastFromArray<T, IT>(estimation);
}
}
}
template <class T>
inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
template <class T, typename IT, typename UIT>
inline void FastNlMeansDenoisingInvoker<T, IT, UIT>::calcDistSumsForFirstElementInRow(
int i,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const
Array2d<IT>& dist_sums,
Array3d<IT>& col_dist_sums,
Array3d<IT>& up_col_dist_sums) const
{
int j = 0;
@ -276,7 +276,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++)
{
int dist = calcDist<T>(extended_src_,
int dist = calcDist<T, IT>(extended_src_,
border_size_ + i + ty, border_size_ + j + tx,
border_size_ + start_y + ty, border_size_ + start_x + tx);
@ -288,12 +288,12 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
}
}
template <class T>
inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
template <class T, typename IT, typename UIT>
inline void FastNlMeansDenoisingInvoker<T, IT, UIT>::calcDistSumsForElementInFirstRow(
int i, int j, int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const
Array2d<IT>& dist_sums,
Array3d<IT>& col_dist_sums,
Array3d<IT>& up_col_dist_sums) const
{
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
@ -312,7 +312,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int by = start_by + y;
int bx = start_bx + x;
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
col_dist_sums[new_last_col_num][y][x] += calcDist<T>(extended_src_, ay + ty, ax, by + ty, bx);
col_dist_sums[new_last_col_num][y][x] += calcDist<T,IT>(extended_src_, ay + ty, ax, by + ty, bx);
dist_sums[y][x] += col_dist_sums[new_last_col_num][y][x];
up_col_dist_sums[j][y][x] = col_dist_sums[new_last_col_num][y][x];

@ -44,118 +44,152 @@
using namespace cv;
template <typename T> static inline int calcDist(const T a, const T b);
template <> inline int calcDist(const uchar a, const uchar b)
template <typename T, typename IT> struct calcDist_
{
return (a-b) * (a-b);
}
static inline IT f(const T a, const T b);
};
template <> inline int calcDist(const Vec2b a, const Vec2b b)
template <typename IT> struct calcDist_<uchar, IT>
{
return (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]);
}
static inline IT f(uchar a, uchar b)
{
return (IT)(a-b) * (IT)(a-b);
}
};
template <> inline int calcDist(const Vec3b a, const Vec3b b)
template <typename IT> struct calcDist_<Vec2b, IT>
{
return (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]);
}
static inline IT f(const Vec2b a, const Vec2b b)
{
return (IT)(a[0]-b[0])*(IT)(a[0]-b[0]) + (IT)(a[1]-b[1])*(IT)(a[1]-b[1]);
}
};
template <typename T> static inline int calcDist(const Mat& m, int i1, int j1, int i2, int j2)
template <typename IT> struct calcDist_<Vec3b, IT>
{
const T a = m.at<T>(i1, j1);
const T b = m.at<T>(i2, j2);
return calcDist<T>(a,b);
}
static inline IT f(const Vec3b a, const Vec3b b)
{
return
(IT)(a[0]-b[0])*(IT)(a[0]-b[0]) +
(IT)(a[1]-b[1])*(IT)(a[1]-b[1]) +
(IT)(a[2]-b[2])*(IT)(a[2]-b[2]);
}
};
template <typename T> static inline int calcUpDownDist(T a_up, T a_down, T b_up, T b_down)
template <typename T, typename IT> static inline IT calcDist(const T a, const T b)
{
return calcDist(a_down, b_down) - calcDist(a_up, b_up);
return calcDist_<T, IT>::f(a, b);
}
template <> inline int calcUpDownDist(uchar a_up, uchar a_down, uchar b_up, uchar b_down)
template <typename T, typename IT>
static inline IT calcDist(const Mat& m, int i1, int j1, int i2, int j2)
{
int A = a_down - b_down;
int B = a_up - b_up;
return (A-B)*(A+B);
const T a = m.at<T>(i1, j1);
const T b = m.at<T>(i2, j2);
return calcDist<T, IT>(a,b);
}
template <typename T> static inline void incWithWeight(int* estimation, int weight, T p);
template <> inline void incWithWeight(int* estimation, int weight, uchar p)
template <typename T, typename IT> struct calcUpDownDist_
{
estimation[0] += weight * p;
}
static inline IT f(T a_up, T a_down, T b_up, T b_down)
{
return calcDist<T, IT>(a_down, b_down) - calcDist<T, IT>(a_up, b_up);
}
};
template <> inline void incWithWeight(int* estimation, int weight, Vec2b p)
template <typename IT> struct calcUpDownDist_<uchar, IT>
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
}
static inline IT f(uchar a_up, uchar a_down, uchar b_up, uchar b_down)
{
IT A = a_down - b_down;
IT B = a_up - b_up;
return (A-B)*(A+B);
}
};
template <> inline void incWithWeight(int* estimation, int weight, Vec3b p)
template <typename T, typename IT>
static inline IT calcUpDownDist(T a_up, T a_down, T b_up, T b_down)
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
estimation[2] += weight * p[2];
}
return calcUpDownDist_<T, IT>::f(a_up, a_down, b_up, b_down);
};
template <> inline void incWithWeight(int* estimation, int weight, int p)
template <typename T, typename IT> struct incWithWeight_
{
estimation[0] += weight * p;
}
static inline void f(IT* estimation, IT weight, T p);
};
template <> inline void incWithWeight(int* estimation, int weight, Vec2i p)
template <typename IT> struct incWithWeight_<uchar, IT>
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
}
static inline void f(IT* estimation, IT weight, uchar p)
{
estimation[0] += weight * p;
}
};
template <> inline void incWithWeight(int* estimation, int weight, Vec3i p)
template <typename IT> struct incWithWeight_<Vec2b, IT>
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
estimation[2] += weight * p[2];
}
static inline void f(IT* estimation, IT weight, Vec2b p)
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
}
};
template <typename T> static inline T saturateCastFromArray(int* estimation);
template <typename IT> struct incWithWeight_<Vec3b, IT>
{
static inline void f(IT* estimation, IT weight, Vec3b p)
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
estimation[2] += weight * p[2];
}
};
template <> inline uchar saturateCastFromArray(int* estimation)
template <typename T, typename IT>
static inline void incWithWeight(IT* estimation, IT weight, T p)
{
return saturate_cast<uchar>(estimation[0]);
return incWithWeight_<T, IT>::f(estimation, weight, p);
}
template <> inline Vec2b saturateCastFromArray(int* estimation)
template <typename T, typename IT> struct saturateCastFromArray_
{
Vec2b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
return res;
}
static inline T f(IT* estimation);
};
template <> inline Vec3b saturateCastFromArray(int* estimation)
template <typename IT> struct saturateCastFromArray_<uchar, IT>
{
Vec3b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
res[2] = saturate_cast<uchar>(estimation[2]);
return res;
}
static inline uchar f(IT* estimation)
{
return saturate_cast<uchar>(estimation[0]);
}
};
template <> inline int saturateCastFromArray(int* estimation)
template <typename IT> struct saturateCastFromArray_<Vec2b, IT>
{
return estimation[0];
}
static inline Vec2b f(IT* estimation)
{
Vec2b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
return res;
}
};
template <> inline Vec2i saturateCastFromArray(int* estimation)
template <typename IT> struct saturateCastFromArray_<Vec3b, IT>
{
estimation[1] = 0;
return Vec2i(estimation);
}
static inline Vec3b f(IT* estimation)
{
Vec3b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
res[2] = saturate_cast<uchar>(estimation[2]);
return res;
}
};
template <> inline Vec3i saturateCastFromArray(int* estimation)
template <typename T, typename IT> static inline T saturateCastFromArray(IT* estimation)
{
return Vec3i(estimation);
return saturateCastFromArray_<T, IT>::f(estimation);
}
#endif

@ -50,7 +50,7 @@
using namespace cv;
template <typename T>
template <typename T, typename IT, typename UIT>
struct FastNlMeansMultiDenoisingInvoker :
ParallelLoopBody
{
@ -81,21 +81,21 @@ private:
int search_window_half_size_;
int temporal_window_half_size_;
int fixed_point_mult_;
IT fixed_point_mult_;
int almost_template_window_size_sq_bin_shift;
std::vector<int> almost_dist2weight;
std::vector<IT> almost_dist2weight;
void calcDistSumsForFirstElementInRow(int i, Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
void calcDistSumsForFirstElementInRow(int i, Array3d<IT>& dist_sums,
Array4d<IT>& col_dist_sums,
Array4d<IT>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(int i, int j, int first_col_num,
Array3d<int>& dist_sums, Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
Array3d<IT>& dist_sums, Array4d<IT>& col_dist_sums,
Array4d<IT>& up_col_dist_sums) const;
};
template <class T>
FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
template <class T, typename IT, typename UIT>
FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::FastNlMeansMultiDenoisingInvoker(
const std::vector<Mat>& srcImgs,
int imgToDenoiseIndex,
int temporalWindowSize,
@ -125,8 +125,9 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT);
main_extended_src_ = extended_srcs_[temporal_window_half_size_];
const int max_estimate_sum_value = temporal_window_size_ * search_window_size_ * search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value;
const IT max_estimate_sum_value =
(IT)temporal_window_size_ * (IT)search_window_size_ * (IT)search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<IT>::max() / max_estimate_sum_value;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
@ -138,7 +139,7 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
int almost_template_window_size_sq = 1 << almost_template_window_size_sq_bin_shift;
double almost_dist2actual_dist_multiplier = (double) almost_template_window_size_sq / template_window_size_sq;
int max_dist = 255 * 255 * sizeof(T);
IT max_dist = 255 * 255 * sizeof(T);
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1);
almost_dist2weight.resize(almost_max_dist);
@ -146,7 +147,7 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++)
{
double dist = almost_dist * almost_dist2actual_dist_multiplier;
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
IT weight = (IT)round(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_)
weight = 0;
@ -160,19 +161,19 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
dst_ = Mat::zeros(srcImgs[0].size(), srcImgs[0].type());
}
template <class T>
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
template <class T, typename IT, typename UIT>
void FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::operator() (const Range& range) const
{
int row_from = range.start;
int row_to = range.end - 1;
Array3d<int> dist_sums(temporal_window_size_, search_window_size_, search_window_size_);
Array3d<IT> dist_sums(temporal_window_size_, search_window_size_, search_window_size_);
// for lazy calc optimization
Array4d<int> col_dist_sums(template_window_size_, temporal_window_size_, search_window_size_, search_window_size_);
Array4d<IT> col_dist_sums(template_window_size_, temporal_window_size_, search_window_size_, search_window_size_);
int first_col_num = -1;
Array4d<int> up_col_dist_sums(cols_, temporal_window_size_, search_window_size_, search_window_size_);
Array4d<IT> up_col_dist_sums(cols_, temporal_window_size_, search_window_size_, search_window_size_);
for (int i = row_from; i <= row_to; i++)
{
@ -216,15 +217,15 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
for (int d = 0; d < temporal_window_size_; d++)
{
Mat cur_extended_src = extended_srcs_[d];
Array2d<int> cur_dist_sums = dist_sums[d];
Array2d<int> cur_col_dist_sums = col_dist_sums[first_col_num][d];
Array2d<int> cur_up_col_dist_sums = up_col_dist_sums[j][d];
Array2d<IT> cur_dist_sums = dist_sums[d];
Array2d<IT> cur_col_dist_sums = col_dist_sums[first_col_num][d];
Array2d<IT> cur_up_col_dist_sums = up_col_dist_sums[j][d];
for (int y = 0; y < search_window_size; y++)
{
int* dist_sums_row = cur_dist_sums.row_ptr(y);
IT* dist_sums_row = cur_dist_sums.row_ptr(y);
int* col_dist_sums_row = cur_col_dist_sums.row_ptr(y);
int* up_col_dist_sums_row = cur_up_col_dist_sums.row_ptr(y);
IT* col_dist_sums_row = cur_col_dist_sums.row_ptr(y);
IT* up_col_dist_sums_row = cur_up_col_dist_sums.row_ptr(y);
const T* b_up_ptr = cur_extended_src.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T* b_down_ptr = cur_extended_src.ptr<T>(start_by + template_window_half_size_ + y);
@ -234,7 +235,7 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
dist_sums_row[x] -= col_dist_sums_row[x];
col_dist_sums_row[x] = up_col_dist_sums_row[x] +
calcUpDownDist(a_up, a_down, b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]);
calcUpDownDist<T, IT>(a_up, a_down, b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]);
dist_sums_row[x] += col_dist_sums_row[x];
up_col_dist_sums_row[x] = col_dist_sums_row[x];
@ -247,9 +248,9 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
}
// calc weights
int weights_sum = 0;
IT weights_sum = 0;
int estimation[3];
IT estimation[3];
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = 0;
@ -260,33 +261,33 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
{
const T* cur_row_ptr = esrc_d.ptr<T>(border_size_ + search_window_y + y);
int* dist_sums_row = dist_sums.row_ptr(d, y);
IT* dist_sums_row = dist_sums.row_ptr(d, y);
for (int x = 0; x < search_window_size_; x++)
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift;
int almostAvgDist = (int)(dist_sums_row[x] >> almost_template_window_size_sq_bin_shift);
int weight = almost_dist2weight[almostAvgDist];
IT weight = almost_dist2weight[almostAvgDist];
weights_sum += weight;
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight(estimation, weight, p);
incWithWeight<T, IT>(estimation, weight, p);
}
}
}
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = ((unsigned)estimation[channel_num] + weights_sum / 2) / weights_sum;
estimation[channel_num] = (static_cast<UIT>(estimation[channel_num]) + weights_sum / 2) / weights_sum; // ????
dst_.at<T>(i,j) = saturateCastFromArray<T>(estimation);
dst_.at<T>(i,j) = saturateCastFromArray<T, IT>(estimation);
}
}
}
template <class T>
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
int i, Array3d<int>& dist_sums, Array4d<int>& col_dist_sums, Array4d<int>& up_col_dist_sums) const
template <class T, typename IT, typename UIT>
inline void FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::calcDistSumsForFirstElementInRow(
int i, Array3d<IT>& dist_sums, Array4d<IT>& col_dist_sums, Array4d<IT>& up_col_dist_sums) const
{
int j = 0;
@ -303,14 +304,14 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
int start_y = i + y - search_window_half_size_;
int start_x = j + x - search_window_half_size_;
int* dist_sums_ptr = &dist_sums[d][y][x];
int* col_dist_sums_ptr = &col_dist_sums[0][d][y][x];
IT* dist_sums_ptr = &dist_sums[d][y][x];
IT* col_dist_sums_ptr = &col_dist_sums[0][d][y][x];
int col_dist_sums_step = col_dist_sums.step_size(0);
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++)
{
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
{
int dist = calcDist<T>(
IT dist = calcDist<T, IT>(
main_extended_src_.at<T>(border_size_ + i + ty, border_size_ + j + tx),
cur_extended_src.at<T>(border_size_ + start_y + ty, border_size_ + start_x + tx));
@ -325,10 +326,10 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
}
}
template <class T>
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int i, int j, int first_col_num, Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums, Array4d<int>& up_col_dist_sums) const
template <class T, typename IT, typename UIT>
inline void FastNlMeansMultiDenoisingInvoker<T, IT, UIT>::calcDistSumsForElementInFirstRow(
int i, int j, int first_col_num, Array3d<IT>& dist_sums,
Array4d<IT>& col_dist_sums, Array4d<IT>& up_col_dist_sums) const
{
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
@ -350,10 +351,10 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo
int by = start_by + y;
int bx = start_bx + x;
int* col_dist_sums_ptr = &col_dist_sums[new_last_col_num][d][y][x];
IT* col_dist_sums_ptr = &col_dist_sums[new_last_col_num][d][y][x];
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
{
*col_dist_sums_ptr += calcDist<T>(
*col_dist_sums_ptr += calcDist<T, IT>(
main_extended_src_.at<T>(ay + ty, ax),
cur_extended_src.at<T>(by + ty, bx));
}

Loading…
Cancel
Save