|
|
|
@ -702,4 +702,26 @@ TEST(ML_EM, accuracy) { CV_EMTest test; test.safe_run(); } |
|
|
|
|
TEST(ML_EM, save_load) { CV_EMTest_SaveLoad test; test.safe_run(); } |
|
|
|
|
TEST(ML_EM, classification) { CV_EMTest_Classification test; test.safe_run(); } |
|
|
|
|
|
|
|
|
|
TEST(ML_KNearest, regression_12347) |
|
|
|
|
{ |
|
|
|
|
Mat xTrainData = (Mat_<float>(5,2) << 1, 1.1, 1.1, 1, 2, 2, 2.1, 2, 2.1, 2.1); |
|
|
|
|
Mat yTrainLabels = (Mat_<float>(5,1) << 1, 1, 2, 2, 2); |
|
|
|
|
Ptr<KNearest> knn = KNearest::create(); |
|
|
|
|
knn->train(xTrainData, ml::ROW_SAMPLE, yTrainLabels); |
|
|
|
|
|
|
|
|
|
Mat xTestData = (Mat_<float>(2,2) << 1.1, 1.1, 2, 2.2); |
|
|
|
|
Mat zBestLabels, neighbours, dist; |
|
|
|
|
// check output shapes:
|
|
|
|
|
int K = 16, Kexp = std::min(K, xTrainData.rows); |
|
|
|
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
|
|
|
EXPECT_EQ(xTestData.rows, zBestLabels.rows); |
|
|
|
|
EXPECT_EQ(neighbours.cols, Kexp); |
|
|
|
|
EXPECT_EQ(dist.cols, Kexp); |
|
|
|
|
// see if the result is still correct:
|
|
|
|
|
K = 2; |
|
|
|
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
|
|
|
EXPECT_EQ(1, zBestLabels.at<float>(0,0)); |
|
|
|
|
EXPECT_EQ(2, zBestLabels.at<float>(1,0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
|