added gpu version of magnitude, magnitudeSqr, phase, cartToPolar, polarToCart

pull/13383/head
Vladislav Vinogradov 14 years ago
parent a594f01a3e
commit e12e4798e0
  1. 36
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 142
      modules/gpu/src/arithm.cpp
  3. 212
      modules/gpu/src/cuda/mathfunc.cu
  4. 92
      tests/gpu/src/arithm.cpp

@ -452,20 +452,44 @@ namespace cv
//! supports only CV_32FC1 type
CV_EXPORTS void log(const GpuMat& a, GpuMat& b);
//! computes magnitude of each (x(i), y(i)) vector
//! supports only CV_32FC1 type
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude);
//! computes magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitude(const GpuMat& x, GpuMat& magnitude);
//! computes squared magnitude of each (x(i), y(i)) vector
//! supports only CV_32FC1 type
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude);
//! computes squared magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitudeSqr(const GpuMat& x, GpuMat& magnitude);
//! computes magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude);
//! Acync version
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, const Stream& stream);
//! computes squared magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude);
//! Acync version
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, const Stream& stream);
//! computes angle (angle(i)) of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees = false);
//! Acync version
CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, const Stream& stream);
//! converts Cartesian coordinates to polar
//! supports only floating-point source
CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees = false);
//! Acync version
CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees, const Stream& stream);
//! converts polar coordinates to Cartesian
//! supports only floating-point source
CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees = false);
//! Acync version
CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, const Stream& stream);
////////////////////////////// Image processing //////////////////////////////
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation.

@ -69,10 +69,18 @@ void cv::gpu::minMax(const GpuMat&, double*, double*) { throw_nogpu(); }
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::exp(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::log(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitude(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitudeSqr(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
@ -611,56 +619,128 @@ void cv::gpu::log(const GpuMat& src, GpuMat& dst)
}
////////////////////////////////////////////////////////////////////////
// magnitude
// NPP magnitide
namespace
{
typedef NppStatus (*nppMagnitude_t)(const Npp32fc* pSrc, int nSrcStep, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);
inline void npp_magnitude(const GpuMat& src, GpuMat& dst, nppMagnitude_t func)
{
CV_Assert(src.type() == CV_32FC2);
dst.create(src.size(), CV_32FC1);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<Npp32fc>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
}
}
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst)
{
CV_Assert(src.type() == CV_32FC2);
::npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R);
}
dst.create(src.size(), CV_32FC1);
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst)
{
::npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R);
}
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
////////////////////////////////////////////////////////////////////////
// Polar <-> Cart
nppSafeCall( nppiMagnitude_32fc32f_C1R(src.ptr<Npp32fc>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
namespace cv { namespace gpu { namespace mathfunc
{
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream);
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream);
}}}
namespace
{
inline void cartToPolar_caller(const GpuMat& x, const GpuMat& y, GpuMat& mag, bool magSqr, GpuMat& angle, bool angleInDegrees, cudaStream_t stream)
{
CV_DbgAssert(x.size() == y.size() && x.type() == y.type());
CV_Assert(x.depth() == CV_32F);
mag.create(x.size(), x.type());
angle.create(x.size(), x.type());
GpuMat x1cn = x.reshape(1);
GpuMat y1cn = y.reshape(1);
GpuMat mag1cn = mag.reshape(1);
GpuMat angle1cn = angle.reshape(1);
mathfunc::cartToPolar_gpu(x1cn, y1cn, mag1cn, magSqr, angle1cn, angleInDegrees, stream);
}
inline void polarToCart_caller(const GpuMat& mag, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, cudaStream_t stream)
{
CV_DbgAssert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type());
CV_Assert(mag.depth() == CV_32F);
x.create(mag.size(), mag.type());
y.create(mag.size(), mag.type());
GpuMat mag1cn = mag.reshape(1);
GpuMat angle1cn = angle.reshape(1);
GpuMat x1cn = x.reshape(1);
GpuMat y1cn = y.reshape(1);
mathfunc::polarToCart_gpu(mag1cn, angle1cn, x1cn, y1cn, angleInDegrees, stream);
}
}
void cv::gpu::magnitude(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst)
{
CV_DbgAssert(src1.type() == src2.type() && src1.size() == src2.size());
CV_Assert(src1.type() == CV_32FC1);
::cartToPolar_caller(x, y, dst, false, GpuMat(), false, 0);
}
GpuMat src(src1.size(), CV_32FC2);
GpuMat srcs[] = {src1, src2};
cv::gpu::merge(srcs, 2, src);
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst, const Stream& stream)
{
::cartToPolar_caller(x, y, dst, false, GpuMat(), false, StreamAccessor::getStream(stream));
}
cv::gpu::magnitude(src, dst);
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst)
{
::cartToPolar_caller(x, y, dst, true, GpuMat(), false, 0);
}
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst)
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst, const Stream& stream)
{
CV_Assert(src.type() == CV_32FC2);
::cartToPolar_caller(x, y, dst, true, GpuMat(), false, StreamAccessor::getStream(stream));
}
dst.create(src.size(), CV_32FC1);
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees)
{
::cartToPolar_caller(x, y, GpuMat(), false, angle, angleInDegrees, 0);
}
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, const Stream& stream)
{
::cartToPolar_caller(x, y, GpuMat(), false, angle, angleInDegrees, StreamAccessor::getStream(stream));
}
nppSafeCall( nppiMagnitudeSqr_32fc32f_C1R(src.ptr<Npp32fc>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees)
{
::cartToPolar_caller(x, y, mag, false, angle, angleInDegrees, 0);
}
void cv::gpu::magnitudeSqr(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees, const Stream& stream)
{
CV_DbgAssert(src1.type() == src2.type() && src1.size() == src2.size());
CV_Assert(src1.type() == CV_32FC1);
::cartToPolar_caller(x, y, mag, false, angle, angleInDegrees, StreamAccessor::getStream(stream));
}
GpuMat src(src1.size(), CV_32FC2);
GpuMat srcs[] = {src1, src2};
cv::gpu::merge(srcs, 2, src);
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees)
{
::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, 0);
}
cv::gpu::magnitudeSqr(src, dst);
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, const Stream& stream)
{
::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */
#endif /* !defined (HAVE_CUDA) */

@ -0,0 +1,212 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "cuda_shared.hpp"
using namespace cv::gpu;
#ifndef CV_PI
#define CV_PI 3.1415926535897932384626433832795f
#endif
namespace mathfunc_krnls
{
struct Nothing
{
static __device__ void calc(int, int, float, float, float*, size_t, float)
{
}
};
struct Magnitude
{
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
{
dst[y * dst_step + x] = sqrtf(x_data * x_data + y_data * y_data);
}
};
struct MagnitudeSqr
{
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
{
dst[y * dst_step + x] = x_data * x_data + y_data * y_data;
}
};
struct Atan2
{
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
{
dst[y * dst_step + x] = scale * atan2f(y_data, x_data);
}
};
template <typename Mag, typename Angle>
__global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step,
float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < width && y < height)
{
float x_data = xptr[y * x_step + x];
float y_data = yptr[y * y_step + x];
Mag::calc(x, y, x_data, y_data, mag, mag_step, scale);
Angle::calc(x, y, x_data, y_data, angle, angle_step, scale);
}
}
struct NonEmptyMag
{
static __device__ float get(const float* mag, size_t mag_step, int x, int y)
{
return mag[y * mag_step + x];
}
};
struct EmptyMag
{
static __device__ float get(const float*, size_t, int, int)
{
return 1.0f;
}
};
template <typename Mag>
__global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale,
float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < width && y < height)
{
float mag_data = Mag::get(mag, mag_step, x, y);
float angle_data = angle[y * angle_step + x];
float sin_a, cos_a;
sincosf(scale * angle_data, &sin_a, &cos_a);
xptr[y * x_step + x] = mag_data * cos_a;
yptr[y * y_step + x] = mag_data * sin_a;
}
}
}
namespace cv { namespace gpu { namespace mathfunc
{
template <typename Mag, typename Angle>
void cartToPolar_caller(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(x.cols, threads.x);
grid.y = divUp(x.rows, threads.y);
const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f;
mathfunc_krnls::cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
x.ptr, x.step / sizeof(float), y.ptr, y.step / sizeof(float),
mag.ptr, mag.step / sizeof(float), angle.ptr, angle.step / sizeof(float), scale, x.cols, x.rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream);
static const caller_t callers[2][2][2] =
{
{
{
cartToPolar_caller<mathfunc_krnls::Magnitude, mathfunc_krnls::Atan2>,
cartToPolar_caller<mathfunc_krnls::Magnitude, mathfunc_krnls::Nothing>
},
{
cartToPolar_caller<mathfunc_krnls::MagnitudeSqr, mathfunc_krnls::Atan2>,
cartToPolar_caller<mathfunc_krnls::MagnitudeSqr, mathfunc_krnls::Nothing>,
}
},
{
{
cartToPolar_caller<mathfunc_krnls::Nothing, mathfunc_krnls::Atan2>,
cartToPolar_caller<mathfunc_krnls::Nothing, mathfunc_krnls::Nothing>
},
{
cartToPolar_caller<mathfunc_krnls::Nothing, mathfunc_krnls::Atan2>,
cartToPolar_caller<mathfunc_krnls::Nothing, mathfunc_krnls::Nothing>,
}
}
};
callers[mag.ptr == 0][magSqr][angle.ptr == 0](x, y, mag, angle, angleInDegrees, stream);
}
template <typename Mag>
void polarToCart_caller(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(mag.cols, threads.x);
grid.y = divUp(mag.rows, threads.y);
const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f;
mathfunc_krnls::polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.ptr, mag.step / sizeof(float),
angle.ptr, angle.step / sizeof(float), scale, x.ptr, x.step / sizeof(float), y.ptr, y.step / sizeof(float), mag.cols, mag.rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream);
static const caller_t callers[2] =
{
polarToCart_caller<mathfunc_krnls::NonEmptyMag>,
polarToCart_caller<mathfunc_krnls::EmptyMag>
};
callers[mag.ptr == 0](mag, angle, x, y, angleInDegrees, stream);
}
}}}

@ -81,7 +81,7 @@ int CV_GpuArithmTest::CheckNorm(const Mat& m1, const Mat& m2)
{
double ret = norm(m1, m2, NORM_INF);
if (ret < std::numeric_limits<double>::epsilon())
if (ret < 1e-5)
return CvTS::OK;
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
@ -99,7 +99,7 @@ int CV_GpuArithmTest::CheckNorm(double d1, double d2)
{
double ret = ::fabs(d1 - d2);
if (ret < std::numeric_limits<double>::epsilon())
if (ret < 1e-5)
return CvTS::OK;
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
@ -605,6 +605,91 @@ struct CV_GpuNppImageMagnitudeTest : public CV_GpuArithmTest
}
};
////////////////////////////////////////////////////////////////////////////////
// phase
struct CV_GpuNppImagePhaseTest : public CV_GpuArithmTest
{
CV_GpuNppImagePhaseTest() : CV_GpuArithmTest( "GPU-NppImagePhase", "phase" ) {}
int test( const Mat& mat1, const Mat& mat2 )
{
if (mat1.type() != CV_32FC1)
{
ts->printf(CvTS::LOG, "\nUnsupported type\n");
return CvTS::OK;
}
cv::Mat cpuRes;
cv::phase(mat1, mat2, cpuRes);
GpuMat gpu1(mat1);
GpuMat gpu2(mat2);
GpuMat gpuRes;
cv::gpu::phase(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
}
};
////////////////////////////////////////////////////////////////////////////////
// cartToPolar
struct CV_GpuNppImageCartToPolarTest : public CV_GpuArithmTest
{
CV_GpuNppImageCartToPolarTest() : CV_GpuArithmTest( "GPU-NppImageCartToPolar", "cartToPolar" ) {}
int test( const Mat& mat1, const Mat& mat2 )
{
if (mat1.type() != CV_32FC1)
{
ts->printf(CvTS::LOG, "\nUnsupported type\n");
return CvTS::OK;
}
cv::Mat cpuMag, cpuAngle;
cv::cartToPolar(mat1, mat2, cpuMag, cpuAngle);
GpuMat gpu1(mat1);
GpuMat gpu2(mat2);
GpuMat gpuMag, gpuAngle;
cv::gpu::cartToPolar(gpu1, gpu2, gpuMag, gpuAngle);
int magRes = CheckNorm(cpuMag, gpuMag);
int angleRes = CheckNorm(cpuAngle, gpuAngle);
return magRes == CvTS::OK && angleRes == CvTS::OK ? CvTS::OK : CvTS::FAIL_GENERIC;
}
};
////////////////////////////////////////////////////////////////////////////////
// polarToCart
struct CV_GpuNppImagePolarToCartTest : public CV_GpuArithmTest
{
CV_GpuNppImagePolarToCartTest() : CV_GpuArithmTest( "GPU-NppImagePolarToCart", "polarToCart" ) {}
int test( const Mat& mat1, const Mat& mat2 )
{
if (mat1.type() != CV_32FC1)
{
ts->printf(CvTS::LOG, "\nUnsupported type\n");
return CvTS::OK;
}
cv::Mat cpuX, cpuY;
cv::polarToCart(mat1, mat2, cpuX, cpuY);
GpuMat gpu1(mat1);
GpuMat gpu2(mat2);
GpuMat gpuX, gpuY;
cv::gpu::polarToCart(gpu1, gpu2, gpuX, gpuY);
int xRes = CheckNorm(cpuX, gpuX);
int yRes = CheckNorm(cpuY, gpuY);
return xRes == CvTS::OK && yRes == CvTS::OK ? CvTS::OK : CvTS::FAIL_GENERIC;
}
};
/////////////////////////////////////////////////////////////////////////////
/////////////////// tests registration /////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
@ -629,3 +714,6 @@ CV_GpuNppImageLUTTest CV_GpuNppImageLUT_test;
CV_GpuNppImageExpTest CV_GpuNppImageExp_test;
CV_GpuNppImageLogTest CV_GpuNppImageLog_test;
CV_GpuNppImageMagnitudeTest CV_GpuNppImageMagnitude_test;
CV_GpuNppImagePhaseTest CV_GpuNppImagePhase_test;
CV_GpuNppImageCartToPolarTest CV_GpuNppImageCartToPolar_test;
CV_GpuNppImagePolarToCartTest CV_GpuNppImagePolarToCart_test;

Loading…
Cancel
Save