Merge pull request #2876 from vbystricky:oclopt_integralsum

pull/2920/head
Alexander Alekhin 11 years ago
commit e0584bb818
  1. 6
      modules/imgproc/perf/opencl/perf_imgproc.cpp
  2. 512
      modules/imgproc/src/opencl/integral_sqrsum.cl
  3. 374
      modules/imgproc/src/opencl/integral_sum.cl
  4. 120
      modules/imgproc/src/sumpixels.cpp

@ -231,7 +231,7 @@ OCL_PERF_TEST_P(IntegralFixture, Integral1, ::testing::Combine(OCL_TEST_SIZES, O
OCL_TEST_CYCLE() cv::integral(src, dst, ddepth);
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
SANITY_CHECK(dst, 2e-6, ERROR_RELATIVE);
}
OCL_PERF_TEST_P(IntegralFixture, Integral2, ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32S, CV_32F)))
@ -243,11 +243,11 @@ OCL_PERF_TEST_P(IntegralFixture, Integral2, ::testing::Combine(OCL_TEST_SIZES, O
checkDeviceMaxMemoryAllocSize(srcSize, ddepth);
UMat src(srcSize, CV_8UC1), sum(srcSize + Size(1, 1), ddepth), sqsum(srcSize + Size(1, 1), CV_32F);
declare.in(src, WARMUP_RNG).out(sum).out(sqsum);
declare.in(src, WARMUP_RNG).out(sum, sqsum);
OCL_TEST_CYCLE() cv::integral(src, sum, sqsum, ddepth, CV_32F);
SANITY_CHECK(sum, 1e-6, ERROR_RELATIVE);
SANITY_CHECK(sum, 2e-4, ERROR_RELATIVE);
SANITY_CHECK(sqsum, 5e-5, ERROR_RELATIVE);
}

@ -1,512 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Shengen Yan,yanshengen@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
#if sqdepth == 6
#define CONVERT(step) ((step)>>1)
#else
#define CONVERT(step) ((step))
#endif
#define LSIZE 256
#define LSIZE_1 255
#define LSIZE_2 254
#define HF_LSIZE 128
#define LOG_LSIZE 8
#define LOG_NUM_BANKS 5
#define NUM_BANKS 32
#define GET_CONFLICT_OFFSET(lid) ((lid) >> LOG_NUM_BANKS)
#define noconvert
#if sdepth == 4
kernel void integral_cols(__global uchar4 *src, __global int *sum, __global TYPE *sqsum,
int src_offset, int pre_invalid, int rows, int cols, int src_step, int dst_step, int dst1_step)
{
int lid = get_local_id(0);
int gid = get_group_id(0);
int4 src_t[2], sum_t[2];
TYPE4 sqsum_t[2];
__local int4 lm_sum[2][LSIZE + LOG_LSIZE];
__local TYPE4 lm_sqsum[2][LSIZE + LOG_LSIZE];
__local int* sum_p;
__local TYPE* sqsum_p;
src_step = src_step >> 2;
gid = gid << 1;
for(int i = 0; i < rows; i =i + LSIZE_1)
{
src_t[0] = (i + lid < rows ? convert_int4(src[src_offset + (lid+i) * src_step + min(gid, cols - 1)]) : 0);
src_t[1] = (i + lid < rows ? convert_int4(src[src_offset + (lid+i) * src_step + min(gid + 1, cols - 1)]) : 0);
sum_t[0] = (i == 0 ? 0 : lm_sum[0][LSIZE_2 + LOG_LSIZE]);
sqsum_t[0] = (i == 0 ? (TYPE4)0 : lm_sqsum[0][LSIZE_2 + LOG_LSIZE]);
sum_t[1] = (i == 0 ? 0 : lm_sum[1][LSIZE_2 + LOG_LSIZE]);
sqsum_t[1] = (i == 0 ? (TYPE4)0 : lm_sqsum[1][LSIZE_2 + LOG_LSIZE]);
barrier(CLK_LOCAL_MEM_FENCE);
int bf_loc = lid + GET_CONFLICT_OFFSET(lid);
lm_sum[0][bf_loc] = src_t[0];
lm_sqsum[0][bf_loc] = convert_TYPE4(src_t[0] * src_t[0]);
lm_sum[1][bf_loc] = src_t[1];
lm_sqsum[1][bf_loc] = convert_TYPE4(src_t[1] * src_t[1]);
int offset = 1;
for(int d = LSIZE >> 1 ; d > 0; d>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
}
offset <<= 1;
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < 2)
{
lm_sum[lid][LSIZE_2 + LOG_LSIZE] = 0;
lm_sqsum[lid][LSIZE_2 + LOG_LSIZE] = 0;
}
for(int d = 1; d < LSIZE; d <<= 1)
{
barrier(CLK_LOCAL_MEM_FENCE);
offset >>= 1;
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sum[lid >> 7][ai] = lm_sum[lid >> 7][bi] - lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
lm_sqsum[lid >> 7][ai] = lm_sqsum[lid >> 7][bi] - lm_sqsum[lid >> 7][ai];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
int loc_s0 = gid * dst_step + i + lid - 1 - pre_invalid * dst_step /4, loc_s1 = loc_s0 + dst_step ;
int loc_sq0 = gid * CONVERT(dst1_step) + i + lid - 1 - pre_invalid * dst1_step / sizeof(TYPE),loc_sq1 = loc_sq0 + CONVERT(dst1_step);
if(lid > 0 && (i+lid) <= rows)
{
lm_sum[0][bf_loc] += sum_t[0];
lm_sum[1][bf_loc] += sum_t[1];
lm_sqsum[0][bf_loc] += sqsum_t[0];
lm_sqsum[1][bf_loc] += sqsum_t[1];
sum_p = (__local int*)(&(lm_sum[0][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[0][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 4 + k >= cols + pre_invalid || gid * 4 + k < pre_invalid) continue;
sum[loc_s0 + k * dst_step / 4] = sum_p[k];
sqsum[loc_sq0 + k * dst1_step / sizeof(TYPE)] = sqsum_p[k];
}
sum_p = (__local int*)(&(lm_sum[1][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[1][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 4 + k + 4 >= cols + pre_invalid) break;
sum[loc_s1 + k * dst_step / 4] = sum_p[k];
sqsum[loc_sq1 + k * dst1_step / sizeof(TYPE)] = sqsum_p[k];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
kernel void integral_rows(__global int4 *srcsum, __global TYPE4 * srcsqsum,__global int *sum,
__global TYPE *sqsum, int rows, int cols, int src_step, int src1_step, int sum_step,
int sqsum_step, int sum_offset, int sqsum_offset)
{
int lid = get_local_id(0);
int gid = get_group_id(0);
int4 src_t[2], sum_t[2];
TYPE4 sqsrc_t[2],sqsum_t[2];
__local int4 lm_sum[2][LSIZE + LOG_LSIZE];
__local TYPE4 lm_sqsum[2][LSIZE + LOG_LSIZE];
__local int *sum_p;
__local TYPE *sqsum_p;
src_step = src_step >> 4;
src1_step = (src1_step / sizeof(TYPE)) >> 2 ;
gid <<= 1;
for(int i = 0; i < rows; i =i + LSIZE_1)
{
src_t[0] = i + lid < rows ? srcsum[(lid+i) * src_step + gid ] : (int4)0;
sqsrc_t[0] = i + lid < rows ? srcsqsum[(lid+i) * src1_step + gid ] : (TYPE4)0;
src_t[1] = i + lid < rows ? srcsum[(lid+i) * src_step + gid + 1] : (int4)0;
sqsrc_t[1] = i + lid < rows ? srcsqsum[(lid+i) * src1_step + gid + 1] : (TYPE4)0;
sum_t[0] = (i == 0 ? 0 : lm_sum[0][LSIZE_2 + LOG_LSIZE]);
sqsum_t[0] = (i == 0 ? (TYPE4)0 : lm_sqsum[0][LSIZE_2 + LOG_LSIZE]);
sum_t[1] = (i == 0 ? 0 : lm_sum[1][LSIZE_2 + LOG_LSIZE]);
sqsum_t[1] = (i == 0 ? (TYPE4)0 : lm_sqsum[1][LSIZE_2 + LOG_LSIZE]);
barrier(CLK_LOCAL_MEM_FENCE);
int bf_loc = lid + GET_CONFLICT_OFFSET(lid);
lm_sum[0][bf_loc] = src_t[0];
lm_sqsum[0][bf_loc] = sqsrc_t[0];
lm_sum[1][bf_loc] = src_t[1];
lm_sqsum[1][bf_loc] = sqsrc_t[1];
int offset = 1;
for(int d = LSIZE >> 1 ; d > 0; d>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
}
offset <<= 1;
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < 2)
{
lm_sum[lid][LSIZE_2 + LOG_LSIZE] = 0;
lm_sqsum[lid][LSIZE_2 + LOG_LSIZE] = 0;
}
for(int d = 1; d < LSIZE; d <<= 1)
{
barrier(CLK_LOCAL_MEM_FENCE);
offset >>= 1;
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sum[lid >> 7][ai] = lm_sum[lid >> 7][bi] - lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
lm_sqsum[lid >> 7][ai] = lm_sqsum[lid >> 7][bi] - lm_sqsum[lid >> 7][ai];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if(gid == 0 && (i + lid) <= rows)
{
sum[sum_offset + i + lid] = 0;
sqsum[sqsum_offset + i + lid] = 0;
}
if(i + lid == 0)
{
int loc0 = gid * sum_step;
int loc1 = gid * CONVERT(sqsum_step);
for(int k = 1; k <= 8; k++)
{
if(gid * 4 + k > cols) break;
sum[sum_offset + loc0 + k * sum_step / 4] = 0;
sqsum[sqsum_offset + loc1 + k * sqsum_step / sizeof(TYPE)] = 0;
}
}
int loc_s0 = sum_offset + gid * sum_step + sum_step / 4 + i + lid, loc_s1 = loc_s0 + sum_step ;
int loc_sq0 = sqsum_offset + gid * CONVERT(sqsum_step) + sqsum_step / sizeof(TYPE) + i + lid, loc_sq1 = loc_sq0 + CONVERT(sqsum_step) ;
if(lid > 0 && (i+lid) <= rows)
{
lm_sum[0][bf_loc] += sum_t[0];
lm_sum[1][bf_loc] += sum_t[1];
lm_sqsum[0][bf_loc] += sqsum_t[0];
lm_sqsum[1][bf_loc] += sqsum_t[1];
sum_p = (__local int*)(&(lm_sum[0][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[0][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 4 + k >= cols) break;
sum[loc_s0 + k * sum_step / 4] = sum_p[k];
sqsum[loc_sq0 + k * sqsum_step / sizeof(TYPE)] = sqsum_p[k];
}
sum_p = (__local int*)(&(lm_sum[1][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[1][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 4 + 4 + k >= cols) break;
sum[loc_s1 + k * sum_step / 4] = sum_p[k];
sqsum[loc_sq1 + k * sqsum_step / sizeof(TYPE)] = sqsum_p[k];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
#elif sdepth == 5
kernel void integral_cols(__global uchar4 *src, __global float *sum, __global TYPE *sqsum,
int src_offset, int pre_invalid, int rows, int cols, int src_step, int dst_step, int dst1_step)
{
int lid = get_local_id(0);
int gid = get_group_id(0);
float4 src_t[2], sum_t[2];
TYPE4 sqsum_t[2];
__local float4 lm_sum[2][LSIZE + LOG_LSIZE];
__local TYPE4 lm_sqsum[2][LSIZE + LOG_LSIZE];
__local float* sum_p;
__local TYPE* sqsum_p;
src_step = src_step >> 2;
gid = gid << 1;
for(int i = 0; i < rows; i =i + LSIZE_1)
{
src_t[0] = (i + lid < rows ? convert_float4(src[src_offset + (lid+i) * src_step + min(gid, cols - 1)]) : (float4)0);
src_t[1] = (i + lid < rows ? convert_float4(src[src_offset + (lid+i) * src_step + min(gid + 1, cols - 1)]) : (float4)0);
sum_t[0] = (i == 0 ? (float4)0 : lm_sum[0][LSIZE_2 + LOG_LSIZE]);
sqsum_t[0] = (i == 0 ? (TYPE4)0 : lm_sqsum[0][LSIZE_2 + LOG_LSIZE]);
sum_t[1] = (i == 0 ? (float4)0 : lm_sum[1][LSIZE_2 + LOG_LSIZE]);
sqsum_t[1] = (i == 0 ? (TYPE4)0 : lm_sqsum[1][LSIZE_2 + LOG_LSIZE]);
barrier(CLK_LOCAL_MEM_FENCE);
int bf_loc = lid + GET_CONFLICT_OFFSET(lid);
lm_sum[0][bf_loc] = src_t[0];
lm_sqsum[0][bf_loc] = convert_TYPE4(src_t[0] * src_t[0]);
// printf("%f\n", src_t[0].s0);
lm_sum[1][bf_loc] = src_t[1];
lm_sqsum[1][bf_loc] = convert_TYPE4(src_t[1] * src_t[1]);
int offset = 1;
for(int d = LSIZE >> 1 ; d > 0; d>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
}
offset <<= 1;
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < 2)
{
lm_sum[lid][LSIZE_2 + LOG_LSIZE] = 0;
lm_sqsum[lid][LSIZE_2 + LOG_LSIZE] = 0;
}
for(int d = 1; d < LSIZE; d <<= 1)
{
barrier(CLK_LOCAL_MEM_FENCE);
offset >>= 1;
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sum[lid >> 7][ai] = lm_sum[lid >> 7][bi] - lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
lm_sqsum[lid >> 7][ai] = lm_sqsum[lid >> 7][bi] - lm_sqsum[lid >> 7][ai];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
int loc_s0 = gid * dst_step + i + lid - 1 - pre_invalid * dst_step / 4, loc_s1 = loc_s0 + dst_step ;
int loc_sq0 = gid * CONVERT(dst1_step) + i + lid - 1 - pre_invalid * dst1_step / sizeof(TYPE), loc_sq1 = loc_sq0 + CONVERT(dst1_step);
if(lid > 0 && (i+lid) <= rows)
{
lm_sum[0][bf_loc] += sum_t[0];
lm_sum[1][bf_loc] += sum_t[1];
lm_sqsum[0][bf_loc] += sqsum_t[0];
lm_sqsum[1][bf_loc] += sqsum_t[1];
sum_p = (__local float*)(&(lm_sum[0][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[0][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 4 + k >= cols + pre_invalid || gid * 4 + k < pre_invalid) continue;
sum[loc_s0 + k * dst_step / 4] = sum_p[k];
sqsum[loc_sq0 + k * dst1_step / sizeof(TYPE)] = sqsum_p[k];
}
sum_p = (__local float*)(&(lm_sum[1][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[1][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 4 + k + 4 >= cols + pre_invalid) break;
sum[loc_s1 + k * dst_step / 4] = sum_p[k];
sqsum[loc_sq1 + k * dst1_step / sizeof(TYPE)] = sqsum_p[k];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
kernel void integral_rows(__global float4 *srcsum, __global TYPE4 * srcsqsum, __global float *sum ,
__global TYPE *sqsum, int rows, int cols, int src_step, int src1_step, int sum_step,
int sqsum_step, int sum_offset, int sqsum_offset)
{
int lid = get_local_id(0);
int gid = get_group_id(0);
float4 src_t[2], sum_t[2];
TYPE4 sqsrc_t[2],sqsum_t[2];
__local float4 lm_sum[2][LSIZE + LOG_LSIZE];
__local TYPE4 lm_sqsum[2][LSIZE + LOG_LSIZE];
__local float *sum_p;
__local TYPE *sqsum_p;
src_step = src_step >> 4;
src1_step = (src1_step / sizeof(TYPE)) >> 2;
for(int i = 0; i < rows; i =i + LSIZE_1)
{
src_t[0] = i + lid < rows ? srcsum[(lid+i) * src_step + gid * 2] : (float4)0;
sqsrc_t[0] = i + lid < rows ? srcsqsum[(lid+i) * src1_step + gid * 2] : (TYPE4)0;
src_t[1] = i + lid < rows ? srcsum[(lid+i) * src_step + gid * 2 + 1] : (float4)0;
sqsrc_t[1] = i + lid < rows ? srcsqsum[(lid+i) * src1_step + gid * 2 + 1] : (TYPE4)0;
sum_t[0] = (i == 0 ? (float4)0 : lm_sum[0][LSIZE_2 + LOG_LSIZE]);
sqsum_t[0] = (i == 0 ? (TYPE4)0 : lm_sqsum[0][LSIZE_2 + LOG_LSIZE]);
sum_t[1] = (i == 0 ? (float4)0 : lm_sum[1][LSIZE_2 + LOG_LSIZE]);
sqsum_t[1] = (i == 0 ? (TYPE4)0 : lm_sqsum[1][LSIZE_2 + LOG_LSIZE]);
barrier(CLK_LOCAL_MEM_FENCE);
int bf_loc = lid + GET_CONFLICT_OFFSET(lid);
lm_sum[0][bf_loc] = src_t[0];
lm_sqsum[0][bf_loc] = sqsrc_t[0];
lm_sum[1][bf_loc] = src_t[1];
lm_sqsum[1][bf_loc] = sqsrc_t[1];
int offset = 1;
for(int d = LSIZE >> 1 ; d > 0; d>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
}
offset <<= 1;
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < 2)
{
lm_sum[lid][LSIZE_2 + LOG_LSIZE] = 0;
lm_sqsum[lid][LSIZE_2 + LOG_LSIZE] = 0;
}
for(int d = 1; d < LSIZE; d <<= 1)
{
barrier(CLK_LOCAL_MEM_FENCE);
offset >>= 1;
int ai = offset * (((lid & 127)<<1) +1) - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sum[lid >> 7][ai] = lm_sum[lid >> 7][bi] - lm_sum[lid >> 7][ai];
lm_sqsum[lid >> 7][bi] += lm_sqsum[lid >> 7][ai];
lm_sqsum[lid >> 7][ai] = lm_sqsum[lid >> 7][bi] - lm_sqsum[lid >> 7][ai];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if(gid == 0 && (i + lid) <= rows)
{
sum[sum_offset + i + lid] = 0;
sqsum[sqsum_offset + i + lid] = 0;
}
if(i + lid == 0)
{
int loc0 = gid * 2 * sum_step;
int loc1 = gid * 2 * CONVERT(sqsum_step);
for(int k = 1; k <= 8; k++)
{
if(gid * 8 + k > cols) break;
sum[sum_offset + loc0 + k * sum_step / 4] = 0;
sqsum[sqsum_offset + loc1 + k * sqsum_step / sizeof(TYPE)] = 0;
}
}
int loc_s0 = sum_offset + gid * 2 * sum_step + sum_step / 4 + i + lid, loc_s1 = loc_s0 + sum_step ;
int loc_sq0 = sqsum_offset + gid * 2 * CONVERT(sqsum_step) + sqsum_step / sizeof(TYPE) + i + lid, loc_sq1 = loc_sq0 + CONVERT(sqsum_step) ;
if(lid > 0 && (i+lid) <= rows)
{
lm_sum[0][bf_loc] += sum_t[0];
lm_sum[1][bf_loc] += sum_t[1];
lm_sqsum[0][bf_loc] += sqsum_t[0];
lm_sqsum[1][bf_loc] += sqsum_t[1];
sum_p = (__local float*)(&(lm_sum[0][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[0][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 8 + k >= cols) break;
sum[loc_s0 + k * sum_step / 4] = sum_p[k];
sqsum[loc_sq0 + k * sqsum_step / sizeof(TYPE)] = sqsum_p[k];
}
sum_p = (__local float*)(&(lm_sum[1][bf_loc]));
sqsum_p = (__local TYPE*)(&(lm_sqsum[1][bf_loc]));
for(int k = 0; k < 4; k++)
{
if(gid * 8 + 4 + k >= cols) break;
sum[loc_s1 + k * sum_step / 4] = sum_p[k];
sqsum[loc_sq1 + k * sqsum_step / sizeof(TYPE)] = sqsum_p[k];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
#endif

@ -1,46 +1,9 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Shengen Yan,yanshengen@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef DOUBLE_SUPPORT
@ -51,237 +14,170 @@
#endif
#endif
#define LSIZE 256
#define LSIZE_1 255
#define LSIZE_2 254
#define HF_LSIZE 128
#define LOG_LSIZE 8
#define LOG_NUM_BANKS 5
#define NUM_BANKS 32
#define GET_CONFLICT_OFFSET(lid) ((lid) >> LOG_NUM_BANKS)
#if sdepth == 4
#define sumT int
#define vecSumT int4
#define convertToSum4 convert_int4
#elif sdepth == 5
#define sumT float
#define vecSumT float4
#define convertToSum4 convert_float4
#ifndef LOCAL_SUM_SIZE
#define LOCAL_SUM_SIZE 16
#endif
#define LOCAL_SUM_STRIDE (LOCAL_SUM_SIZE + 1)
kernel void integral_sum_cols(__global const uchar4 *src, __global uchar *sum_ptr,
int src_offset, int rows, int cols, int src_step, int dst_step)
kernel void integral_sum_cols(__global const uchar *src_ptr, int src_step, int src_offset, int rows, int cols,
__global uchar *buf_ptr, int buf_step, int buf_offset
#ifdef SUM_SQUARE
,__global uchar *buf_sq_ptr, int buf_sq_step, int buf_sq_offset
#endif
)
{
__global sumT *sum = (__global sumT *)sum_ptr;
__local sumT lm_sum[LOCAL_SUM_STRIDE * LOCAL_SUM_SIZE];
#ifdef SUM_SQUARE
__local sumSQT lm_sum_sq[LOCAL_SUM_STRIDE * LOCAL_SUM_SIZE];
#endif
int lid = get_local_id(0);
int gid = get_group_id(0);
vecSumT src_t[2], sum_t[2];
__local vecSumT lm_sum[2][LSIZE + LOG_LSIZE];
__local sumT* sum_p;
src_step = src_step >> 2;
gid = gid << 1;
int lid_prim = ((lid & 127) << 1) + 1;
for (int i = 0; i < rows; i += LSIZE_1)
{
if (i + lid < rows)
{
int src_index = mad24((lid+i), src_step, gid + src_offset);
src_t[0] = convertToSum4(src[src_index]);
src_t[1] = convertToSum4(src[src_index + 1]);
}
else
{
src_t[0] = (vecSumT)0;
src_t[1] = (vecSumT)0;
}
if (i == 0)
{
sum_t[0] = (vecSumT)0;
sum_t[1] = (vecSumT)0;
}
else
{
sum_t[0] = lm_sum[0][LSIZE_2 + LOG_LSIZE];
sum_t[1] = lm_sum[1][LSIZE_2 + LOG_LSIZE];
}
barrier(CLK_LOCAL_MEM_FENCE);
int bf_loc = lid + GET_CONFLICT_OFFSET(lid);
lm_sum[0][bf_loc] = src_t[0];
lm_sum[1][bf_loc] = src_t[1];
int x = get_global_id(0);
int src_index = x + src_offset;
int offset = 1;
for (int d = LSIZE >> 1 ; d > 0; d>>=1)
sumT accum = 0;
#ifdef SUM_SQUARE
sumSQT accum_sq = 0;
#endif
for (int y = 0; y < rows; y += LOCAL_SUM_SIZE)
{
int lsum_index = lid;
#pragma unroll
for (int yin = 0; yin < LOCAL_SUM_SIZE; yin++, src_index+=src_step, lsum_index += LOCAL_SUM_STRIDE)
{
barrier(CLK_LOCAL_MEM_FENCE);
int ai = offset * lid_prim - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
if ((x < cols) && (y + yin < rows))
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
__global const uchar *src = src_ptr + src_index;
accum += src[0];
#ifdef SUM_SQUARE
sumSQT temp = src[0] * src[0];
accum_sq += temp;
#endif
}
offset <<= 1;
lm_sum[lsum_index] = accum;
#ifdef SUM_SQUARE
lm_sum_sq[lsum_index] = accum_sq;
#endif
}
barrier(CLK_LOCAL_MEM_FENCE);
if (lid < 2)
{
lm_sum[lid][LSIZE_2 + LOG_LSIZE] = 0;
}
for (int d = 1; d < LSIZE; d <<= 1)
{
barrier(CLK_LOCAL_MEM_FENCE);
offset >>= 1;
int ai = offset * lid_prim - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sum[lid >> 7][ai] = lm_sum[lid >> 7][bi] - lm_sum[lid >> 7][ai];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (lid > 0 && (i+lid) <= rows)
{
int loc_s0 = mad24(gid, dst_step, i + lid - 1), loc_s1 = loc_s0 + dst_step;
lm_sum[0][bf_loc] += sum_t[0];
lm_sum[1][bf_loc] += sum_t[1];
sum_p = (__local sumT*)(&(lm_sum[0][bf_loc]));
for (int k = 0; k < 4; k++)
{
if (gid * 4 + k >= cols)
break;
sum[loc_s0 + k * dst_step / 4] = sum_p[k];
}
sum_p = (__local sumT*)(&(lm_sum[1][bf_loc]));
for (int k = 0; k < 4; k++)
{
if (gid * 4 + k + 4 >= cols)
break;
sum[loc_s1 + k * dst_step / 4] = sum_p[k];
}
//int buf_index = buf_offset + buf_step * LOCAL_SUM_COLS * gid + sizeof(sumT) * y + sizeof(sumT) * lid;
int buf_index = mad24(buf_step, LOCAL_SUM_SIZE * gid, mad24((int)sizeof(sumT), y + lid, buf_offset));
#ifdef SUM_SQUARE
int buf_sq_index = mad24(buf_sq_step, LOCAL_SUM_SIZE * gid, mad24((int)sizeof(sumSQT), y + lid, buf_sq_offset));
#endif
lsum_index = LOCAL_SUM_STRIDE * lid;
#pragma unroll
for (int yin = 0; yin < LOCAL_SUM_SIZE; yin++, lsum_index ++)
{
__global sumT *buf = (__global sumT *)(buf_ptr + buf_index);
buf[0] = lm_sum[lsum_index];
buf_index += buf_step;
#ifdef SUM_SQUARE
__global sumSQT *bufsq = (__global sumSQT *)(buf_sq_ptr + buf_sq_index);
bufsq[0] = lm_sum_sq[lsum_index];
buf_sq_index += buf_sq_step;
#endif
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
kernel void integral_sum_rows(__global const uchar *srcsum_ptr, __global uchar *sum_ptr,
int rows, int cols, int src_step, int sum_step, int sum_offset)
kernel void integral_sum_rows(__global const uchar *buf_ptr, int buf_step, int buf_offset,
#ifdef SUM_SQUARE
__global uchar *buf_sq_ptr, int buf_sq_step, int buf_sq_offset,
#endif
__global uchar *dst_ptr, int dst_step, int dst_offset, int rows, int cols
#ifdef SUM_SQUARE
,__global uchar *dst_sq_ptr, int dst_sq_step, int dst_sq_offset
#endif
)
{
__global const vecSumT *srcsum = (__global const vecSumT *)srcsum_ptr;
__global sumT *sum = (__global sumT *)sum_ptr;
__local sumT lm_sum[LOCAL_SUM_STRIDE * LOCAL_SUM_SIZE];
#ifdef SUM_SQUARE
__local sumSQT lm_sum_sq[LOCAL_SUM_STRIDE * LOCAL_SUM_SIZE];
#endif
int lid = get_local_id(0);
int gid = get_group_id(0);
vecSumT src_t[2], sum_t[2];
__local vecSumT lm_sum[2][LSIZE + LOG_LSIZE];
__local sumT *sum_p;
src_step = src_step >> 4;
int lid_prim = ((lid & 127) << 1) + 1;
for (int i = 0; i < rows; i += LSIZE_1)
int gs = get_global_size(0);
int x = get_global_id(0);
__global sumT *dst = (__global sumT *)(dst_ptr + dst_offset);
for (int xin = x; xin < cols; xin += gs)
{
if (i + lid < rows)
{
int sum_idx = mad24(lid + i, src_step, gid * 2);
src_t[0] = srcsum[sum_idx];
src_t[1] = srcsum[sum_idx + 1];
}
else
{
src_t[0] = 0;
src_t[1] = 0;
}
if (i == 0)
{
sum_t[0] = 0;
sum_t[1] = 0;
}
else
{
sum_t[0] = lm_sum[0][LSIZE_2 + LOG_LSIZE];
sum_t[1] = lm_sum[1][LSIZE_2 + LOG_LSIZE];
}
barrier(CLK_LOCAL_MEM_FENCE);
dst[xin] = 0;
}
dst_offset += dst_step;
int bf_loc = lid + GET_CONFLICT_OFFSET(lid);
if (x < rows - 1)
{
dst = (__global sumT *)(dst_ptr + mad24(x, dst_step, dst_offset));
dst[0] = 0;
}
lm_sum[0][bf_loc] = src_t[0];
lm_sum[1][bf_loc] = src_t[1];
int buf_index = mad24((int)sizeof(sumT), x, buf_offset);
sumT accum = 0;
int offset = 1;
for (int d = LSIZE >> 1 ; d > 0; d>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
int ai = offset * lid_prim - 1, bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
#ifdef SUM_SQUARE
__global sumSQT *dst_sq = (__global sumT *)(dst_sq_ptr + dst_sq_offset);
for (int xin = x; xin < cols; xin += gs)
{
dst_sq[xin] = 0;
}
dst_sq_offset += dst_sq_step;
if((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
}
offset <<= 1;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (lid < 2)
{
lm_sum[lid][LSIZE_2 + LOG_LSIZE] = 0;
}
for (int d = 1; d < LSIZE; d <<= 1)
{
barrier(CLK_LOCAL_MEM_FENCE);
offset >>= 1;
int ai = offset * lid_prim - 1,bi = ai + offset;
ai += GET_CONFLICT_OFFSET(ai);
bi += GET_CONFLICT_OFFSET(bi);
dst_sq = (__global sumSQT *)(dst_sq_ptr + mad24(x, dst_sq_step, dst_sq_offset));
dst_sq[0] = 0;
if ((lid & 127) < d)
{
lm_sum[lid >> 7][bi] += lm_sum[lid >> 7][ai];
lm_sum[lid >> 7][ai] = lm_sum[lid >> 7][bi] - lm_sum[lid >> 7][ai];
}
int buf_sq_index = mad24((int)sizeof(sumSQT), x, buf_sq_offset);
sumSQT accum_sq = 0;
#endif
for (int y = 1; y < cols; y += LOCAL_SUM_SIZE)
{
int lsum_index = lid;
#pragma unroll
for (int yin = 0; yin < LOCAL_SUM_SIZE; yin++, lsum_index += LOCAL_SUM_STRIDE)
{
__global const sumT *buf = (__global const sumT *)(buf_ptr + buf_index);
accum += buf[0];
lm_sum[lsum_index] = accum;
buf_index += buf_step;
#ifdef SUM_SQUARE
__global const sumSQT *buf_sq = (__global const sumSQT *)(buf_sq_ptr + buf_sq_index);
accum_sq += buf_sq[0];
lm_sum_sq[lsum_index] = accum_sq;
buf_sq_index += buf_sq_step;
#endif
}
barrier(CLK_LOCAL_MEM_FENCE);
if (gid == 0 && (i + lid) <= rows)
{
sum[sum_offset + i + lid] = 0;
}
if (i + lid == 0)
{
int loc0 = gid * 2 * sum_step;
for(int k = 1; k <= 8; k++)
{
if (gid * 8 + k > cols)
break;
sum[sum_offset + loc0 + k * sum_step / 4] = 0;
}
}
if (lid > 0 && (i+lid) <= rows)
if (y + lid < cols)
{
int loc_s0 = sum_offset + gid * 2 * sum_step + sum_step / 4 + i + lid, loc_s1 = loc_s0 + sum_step ;
lm_sum[0][bf_loc] += sum_t[0];
lm_sum[1][bf_loc] += sum_t[1];
sum_p = (__local sumT*)(&(lm_sum[0][bf_loc]));
for(int k = 0; k < 4; k++)
{
if (gid * 8 + k >= cols)
break;
sum[loc_s0 + k * sum_step / 4] = sum_p[k];
}
sum_p = (__local sumT*)(&(lm_sum[1][bf_loc]));
for(int k = 0; k < 4; k++)
//int dst_index = dst_offset + dst_step * LOCAL_SUM_COLS * gid + sizeof(sumT) * y + sizeof(sumT) * lid;
int dst_index = mad24(dst_step, LOCAL_SUM_SIZE * gid, mad24((int)sizeof(sumT), y + lid, dst_offset));
#ifdef SUM_SQUARE
int dst_sq_index = mad24(dst_sq_step, LOCAL_SUM_SIZE * gid, mad24((int)sizeof(sumSQT), y + lid, dst_sq_offset));
#endif
lsum_index = LOCAL_SUM_STRIDE * lid;
int yin_max = min(rows - 1 - LOCAL_SUM_SIZE * gid, LOCAL_SUM_SIZE);
#pragma unroll
for (int yin = 0; yin < yin_max; yin++, lsum_index++)
{
if (gid * 8 + 4 + k >= cols)
break;
sum[loc_s1 + k * sum_step / 4] = sum_p[k];
dst = (__global sumT *)(dst_ptr + dst_index);
dst[0] = lm_sum[lsum_index];
dst_index += dst_step;
#ifdef SUM_SQUARE
dst_sq = (__global sumSQT *)(dst_sq_ptr + dst_sq_index);
dst_sq[0] = lm_sum_sq[lsum_index];
dst_sq_index += dst_sq_step;
#endif
}
}
barrier(CLK_LOCAL_MEM_FENCE);

@ -235,97 +235,87 @@ typedef void (*IntegralFunc)(const uchar* src, size_t srcstep, uchar* sum, size_
#ifdef HAVE_OPENCL
enum { vlen = 4 };
static bool ocl_integral( InputArray _src, OutputArray _sum, int sdepth )
{
if ( _src.type() != CV_8UC1 || _src.step() % vlen != 0 || _src.offset() % vlen != 0 ||
!(sdepth == CV_32S || sdepth == CV_32F) )
return false;
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
ocl::Kernel k1("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc,
format("-D sdepth=%d", sdepth));
if (k1.empty())
if ( (_src.type() != CV_8UC1) ||
!(sdepth == CV_32S || sdepth == CV_32F || (doubleSupport && sdepth == CV_64F)))
return false;
Size size = _src.size(), t_size = Size(((size.height + vlen - 1) / vlen) * vlen, size.width),
ssize(size.width + 1, size.height + 1);
_sum.create(ssize, sdepth);
UMat src = _src.getUMat(), t_sum(t_size, sdepth), sum = _sum.getUMat();
t_sum = t_sum(Range::all(), Range(0, size.height));
static const int tileSize = 16;
String build_opt = format("-D sumT=%s -D LOCAL_SUM_SIZE=%d%s",
ocl::typeToStr(sdepth), tileSize,
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (kcols.empty())
return false;
int offset = (int)src.offset / vlen;
int vcols = (src.cols + vlen - 1) / vlen;
int sum_offset = (int)sum.offset / vlen;
UMat src = _src.getUMat();
Size src_size = src.size();
Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize);
UMat buf(bufsize, sdepth);
kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf));
size_t gt = src.cols, lt = tileSize;
if (!kcols.run(1, &gt, &lt, false))
return false;
k1.args(ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(t_sum),
offset, src.rows, src.cols, (int)src.step, (int)t_sum.step);
size_t gt = ((vcols + 1) / 2) * 256, lt = 256;
if (!k1.run(1, &gt, &lt, false))
ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (krows.empty())
return false;
ocl::Kernel k2("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc,
format("-D sdepth=%d", sdepth));
k2.args(ocl::KernelArg::PtrReadOnly(t_sum), ocl::KernelArg::PtrWriteOnly(sum),
t_sum.rows, t_sum.cols, (int)t_sum.step, (int)sum.step, sum_offset);
Size sumsize(src_size.width + 1, src_size.height + 1);
_sum.create(sumsize, sdepth);
UMat sum = _sum.getUMat();
size_t gt2 = t_sum.cols * 32, lt2 = 256;
return k2.run(1, &gt2, &lt2, false);
krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::WriteOnly(sum));
gt = src.rows;
return krows.run(1, &gt, &lt, false);
}
static bool ocl_integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, int sdepth, int sqdepth )
{
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( _src.type() != CV_8UC1 || _src.step() % vlen != 0 || _src.offset() % vlen != 0 ||
(!doubleSupport && (sdepth == CV_64F || sqdepth == CV_64F)) )
return false;
char cvt[40];
String opts = format("-D sdepth=%d -D sqdepth=%d -D TYPE=%s -D TYPE4=%s4 -D convert_TYPE4=%s%s",
sdepth, sqdepth, ocl::typeToStr(sqdepth), ocl::typeToStr(sqdepth),
ocl::convertTypeStr(sdepth, sqdepth, 4, cvt),
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel k1("integral_cols", ocl::imgproc::integral_sqrsum_oclsrc, opts);
if (k1.empty())
if ( _src.type() != CV_8UC1 || (!doubleSupport && (sdepth == CV_64F || sqdepth == CV_64F)) )
return false;
Size size = _src.size(), dsize = Size(size.width + 1, size.height + 1),
t_size = Size(((size.height + vlen - 1) / vlen) * vlen, size.width);
UMat src = _src.getUMat(), t_sum(t_size, sdepth), t_sqsum(t_size, sqdepth);
t_sum = t_sum(Range::all(), Range(0, size.height));
t_sqsum = t_sqsum(Range::all(), Range(0, size.height));
_sum.create(dsize, sdepth);
_sqsum.create(dsize, sqdepth);
UMat sum = _sum.getUMat(), sqsum = _sqsum.getUMat();
static const int tileSize = 16;
int offset = (int)src.offset / vlen;
int pre_invalid = src.offset % vlen;
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
int sum_offset = (int)(sum.offset / sum.elemSize());
int sqsum_offset = (int)(sqsum.offset / sqsum.elemSize());
String build_opt = format("-D SUM_SQUARE -D sumT=%s -D sumSQT=%s -D LOCAL_SUM_SIZE=%d%s",
ocl::typeToStr(sdepth), ocl::typeToStr(sqdepth),
tileSize,
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
k1.args(ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(t_sum),
ocl::KernelArg::PtrWriteOnly(t_sqsum), offset, pre_invalid, src.rows,
src.cols, (int)src.step, (int)t_sum.step, (int)t_sqsum.step);
ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (kcols.empty())
return false;
size_t gt = ((vcols + 1) / 2) * 256, lt = 256;
if (!k1.run(1, &gt, &lt, false))
UMat src = _src.getUMat();
Size src_size = src.size();
Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize);
UMat buf(bufsize, sdepth);
UMat buf_sq(bufsize, sqdepth);
kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf), ocl::KernelArg::WriteOnlyNoSize(buf_sq));
size_t gt = src.cols, lt = tileSize;
if (!kcols.run(1, &gt, &lt, false))
return false;
ocl::Kernel k2("integral_rows", ocl::imgproc::integral_sqrsum_oclsrc, opts);
if (k2.empty())
ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (krows.empty())
return false;
k2.args(ocl::KernelArg::PtrReadOnly(t_sum), ocl::KernelArg::PtrReadOnly(t_sqsum),
ocl::KernelArg::PtrWriteOnly(sum), ocl::KernelArg::PtrWriteOnly(sqsum),
t_sum.rows, t_sum.cols, (int)t_sum.step, (int)t_sqsum.step,
(int)sum.step, (int)sqsum.step, sum_offset, sqsum_offset);
Size sumsize(src_size.width + 1, src_size.height + 1);
_sum.create(sumsize, sdepth);
UMat sum = _sum.getUMat();
_sqsum.create(sumsize, sqdepth);
UMat sum_sq = _sqsum.getUMat();
size_t gt2 = t_sum.cols * 32, lt2 = 256;
return k2.run(1, &gt2, &lt2, false);
krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::ReadOnlyNoSize(buf_sq), ocl::KernelArg::WriteOnly(sum), ocl::KernelArg::WriteOnlyNoSize(sum_sq));
gt = src.rows;
return krows.run(1, &gt, &lt, false);
}
#endif

Loading…
Cancel
Save