|
|
|
@ -15,6 +15,10 @@ |
|
|
|
|
|
|
|
|
|
#include <iostream> |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL // OpenCL is not well supported
|
|
|
|
|
#undef HAVE_OPENCL |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Namespaces
|
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
@ -251,38 +255,41 @@ private: |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
static inline bool |
|
|
|
|
ocl_non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size) |
|
|
|
|
ocl_non_linear_diffusion_step(InputArray Lt_, InputArray Lf_, OutputArray Lstep_, float step_size) |
|
|
|
|
{ |
|
|
|
|
if(!Lt.isContinuous()) |
|
|
|
|
return false; |
|
|
|
|
if (!Lt_.isContinuous()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
UMat Lt = Lt_.getUMat(), Lf = Lf_.getUMat(), Lstep = Lstep_.getUMat(); |
|
|
|
|
|
|
|
|
|
size_t globalSize[] = {(size_t)Lt.cols, (size_t)Lt.rows}; |
|
|
|
|
size_t globalSize[] = {(size_t)Lt.cols, (size_t)Lt.rows}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_nld_step_scalar", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if( ker.empty() ) |
|
|
|
|
return false; |
|
|
|
|
ocl::Kernel ker("AKAZE_nld_step_scalar", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if (ker.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::ReadOnly(Lt), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lf), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Lstep), |
|
|
|
|
step_size).run(2, globalSize, 0, true); |
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::ReadOnly(Lt), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lf), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Lstep), |
|
|
|
|
step_size) |
|
|
|
|
.run(2, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
|
|
|
|
static inline void |
|
|
|
|
non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size) |
|
|
|
|
non_linear_diffusion_step(InputArray Lt, InputArray Lf, OutputArray Lstep, float step_size) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
|
Lstep.create(Lt.size(), Lt.type()); |
|
|
|
|
|
|
|
|
|
CV_OCL_RUN(true, ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size)); |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lstep.isUMat()), ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size)); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// when on CPU UMats should be already allocated on CPU so getMat here is basicallly no-op
|
|
|
|
|
Mat Mstep = Lstep.getMat(ACCESS_WRITE); |
|
|
|
|
parallel_for_(Range(0, Lt.rows), NonLinearScalarDiffusionStep(Lt.getMat(ACCESS_READ), |
|
|
|
|
Lf.getMat(ACCESS_READ), Mstep, step_size)); |
|
|
|
|
Mat Mstep = Lstep.getMat(); |
|
|
|
|
parallel_for_(Range(0, Lt.rows()), NonLinearScalarDiffusionStep(Lt.getMat(), Lf.getMat(), Mstep, step_size)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -347,25 +354,28 @@ compute_kcontrast(const cv::Mat& Lx, const cv::Mat& Ly, float perc, int nbins) |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
static inline bool |
|
|
|
|
ocl_pm_g2(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast) |
|
|
|
|
ocl_pm_g2(InputArray Lx_, InputArray Ly_, OutputArray Lflow_, float kcontrast) |
|
|
|
|
{ |
|
|
|
|
int total = Lx.rows * Lx.cols; |
|
|
|
|
size_t globalSize[] = {(size_t)total}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_pm_g2", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if( ker.empty() ) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lx), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Ly), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Lflow), |
|
|
|
|
kcontrast, total).run(1, globalSize, 0, true); |
|
|
|
|
UMat Lx = Lx_.getUMat(), Ly = Ly_.getUMat(), Lflow = Lflow_.getUMat(); |
|
|
|
|
|
|
|
|
|
int total = Lx.rows * Lx.cols; |
|
|
|
|
size_t globalSize[] = {(size_t)total}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_pm_g2", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if (ker.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lx), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Ly), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Lflow), |
|
|
|
|
kcontrast, total) |
|
|
|
|
.run(1, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
|
|
|
|
static inline void |
|
|
|
|
compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast, int diffusivity) |
|
|
|
|
compute_diffusivity(InputArray Lx, InputArray Ly, OutputArray Lflow, float kcontrast, int diffusivity) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
@ -376,7 +386,9 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast |
|
|
|
|
pm_g1(Lx, Ly, Lflow, kcontrast); |
|
|
|
|
break; |
|
|
|
|
case KAZE::DIFF_PM_G2: |
|
|
|
|
CV_OCL_RUN(true, ocl_pm_g2(Lx, Ly, Lflow, kcontrast)); |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lflow.isUMat()), ocl_pm_g2(Lx, Ly, Lflow, kcontrast)); |
|
|
|
|
#endif |
|
|
|
|
pm_g2(Lx, Ly, Lflow, kcontrast); |
|
|
|
|
break; |
|
|
|
|
case KAZE::DIFF_WEICKERT: |
|
|
|
@ -391,32 +403,6 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief Fetches pyramid from the gpu. |
|
|
|
|
* @details Setups mapping for matrices that might be probably on the GPU, if the |
|
|
|
|
* code executes with OpenCL. This will setup MLx, MLy, Mdet members in the pyramid with |
|
|
|
|
* mapping to respective UMats. This must be called before CPU-only parts of AKAZE, that work |
|
|
|
|
* only on these Mats. |
|
|
|
|
* |
|
|
|
|
* This prevents mapping/unmapping overhead (and possible uploads/downloads) that would occur, if |
|
|
|
|
* we just create Mats from UMats each time we need it later. This has devastating effects on OCL |
|
|
|
|
* performace. |
|
|
|
|
* |
|
|
|
|
* @param evolution Pyramid to download |
|
|
|
|
*/ |
|
|
|
|
static inline void downloadPyramid(std::vector<Evolution>& evolution) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < evolution.size(); ++i) { |
|
|
|
|
Evolution& e = evolution[i]; |
|
|
|
|
e.Mx = e.Lx.getMat(ACCESS_READ); |
|
|
|
|
e.My = e.Ly.getMat(ACCESS_READ); |
|
|
|
|
e.Mt = e.Lt.getMat(ACCESS_READ); |
|
|
|
|
e.Mdet = e.Ldet.getMat(ACCESS_READ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief This method creates the nonlinear scale space for a given image |
|
|
|
|
* @param img Input image for which the nonlinear scale space needs to be created |
|
|
|
@ -435,12 +421,11 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img) |
|
|
|
|
if (evolution_.size() == 1) { |
|
|
|
|
// we don't need to compute kcontrast factor
|
|
|
|
|
Compute_Determinant_Hessian_Response(); |
|
|
|
|
downloadPyramid(evolution_); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// derivatives, flow and diffusion step
|
|
|
|
|
UMat Lx, Ly, Lsmooth, Lflow, Lstep; |
|
|
|
|
Mat Lx, Ly, Lsmooth, Lflow, Lstep; |
|
|
|
|
|
|
|
|
|
// compute derivatives for computing k contrast
|
|
|
|
|
GaussianBlur(img, Lsmooth, Size(5, 5), 1.0f, 1.0f, BORDER_REPLICATE); |
|
|
|
@ -448,8 +433,7 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img) |
|
|
|
|
Scharr(Lsmooth, Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT); |
|
|
|
|
Lsmooth.release(); |
|
|
|
|
// compute the kcontrast factor
|
|
|
|
|
float kcontrast = compute_kcontrast(Lx.getMat(ACCESS_READ), Ly.getMat(ACCESS_READ), |
|
|
|
|
options_.kcontrast_percentile, options_.kcontrast_nbins); |
|
|
|
|
float kcontrast = compute_kcontrast(Lx, Ly, options_.kcontrast_percentile, options_.kcontrast_nbins); |
|
|
|
|
|
|
|
|
|
// Now generate the rest of evolution levels
|
|
|
|
|
for (size_t i = 1; i < evolution_.size(); i++) { |
|
|
|
@ -483,31 +467,30 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Compute_Determinant_Hessian_Response(); |
|
|
|
|
downloadPyramid(evolution_); |
|
|
|
|
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* ************************************************************************* */ |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
static inline bool |
|
|
|
|
ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy, |
|
|
|
|
UMat& Ldet, float sigma) |
|
|
|
|
ocl_compute_determinant(InputArray Lxx_, InputArray Lxy_, InputArray Lyy_, OutputArray Ldet_, float sigma) |
|
|
|
|
{ |
|
|
|
|
const int total = Lxx.rows * Lxx.cols; |
|
|
|
|
size_t globalSize[] = {(size_t)total}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_compute_determinant", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if( ker.empty() ) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lxx), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lxy), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lyy), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Ldet), |
|
|
|
|
sigma, total).run(1, globalSize, 0, true); |
|
|
|
|
UMat Lxx = Lxx_.getUMat(), Lxy = Lxy_.getUMat(), Lyy = Lyy_.getUMat(), Ldet = Ldet_.getUMat(); |
|
|
|
|
|
|
|
|
|
const int total = Lxx.rows * Lxx.cols; |
|
|
|
|
size_t globalSize[] = {(size_t)total}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel ker("AKAZE_compute_determinant", ocl::features2d::akaze_oclsrc); |
|
|
|
|
if (ker.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return ker.args( |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lxx), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lxy), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(Lyy), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(Ldet), |
|
|
|
|
sigma, total) |
|
|
|
|
.run(1, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
|
|
|
@ -521,27 +504,30 @@ ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy, |
|
|
|
|
* @param Ldet output determinant |
|
|
|
|
* @param sigma determinant will be scaled by this sigma |
|
|
|
|
*/ |
|
|
|
|
static inline void compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy, |
|
|
|
|
UMat& Ldet, float sigma) |
|
|
|
|
static inline void compute_determinant(InputArray Lxx, InputArray Lxy, InputArray Lyy, OutputArray Ldet, float sigma) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
|
Ldet.create(Lxx.size(), Lxx.type()); |
|
|
|
|
Ldet.create(Lxx.size(), Lxx.type()); |
|
|
|
|
|
|
|
|
|
CV_OCL_RUN(true, ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma)); |
|
|
|
|
|
|
|
|
|
// output determinant
|
|
|
|
|
Mat Mxx = Lxx.getMat(ACCESS_READ), Mxy = Lxy.getMat(ACCESS_READ), Myy = Lyy.getMat(ACCESS_READ); |
|
|
|
|
Mat Mdet = Ldet.getMat(ACCESS_WRITE); |
|
|
|
|
float *lxx = Mxx.ptr<float>(); |
|
|
|
|
float *lxy = Mxy.ptr<float>(); |
|
|
|
|
float *lyy = Myy.ptr<float>(); |
|
|
|
|
float *ldet = Mdet.ptr<float>(); |
|
|
|
|
const int total = Lxx.cols * Lxx.rows; |
|
|
|
|
for (int j = 0; j < total; j++) { |
|
|
|
|
ldet[j] = (lxx[j] * lyy[j] - lxy[j] * lxy[j]) * sigma; |
|
|
|
|
} |
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Ldet.isUMat()), ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma)); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// output determinant
|
|
|
|
|
Mat Mxx = Lxx.getMat(), Mxy = Lxy.getMat(), Myy = Lyy.getMat(), Mdet = Ldet.getMat(); |
|
|
|
|
const int W = Mxx.cols, H = Mxx.rows; |
|
|
|
|
for (int y = 0; y < H; y++) |
|
|
|
|
{ |
|
|
|
|
float *lxx = Mxx.ptr<float>(y); |
|
|
|
|
float *lxy = Mxy.ptr<float>(y); |
|
|
|
|
float *lyy = Myy.ptr<float>(y); |
|
|
|
|
float *ldet = Mdet.ptr<float>(y); |
|
|
|
|
for (int x = 0; x < W; x++) |
|
|
|
|
{ |
|
|
|
|
ldet[x] = (lxx[x] * lyy[x] - lxy[x] * lxy[x]) * sigma; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
class DeterminantHessianResponse : public ParallelLoopBody |
|
|
|
@ -554,7 +540,7 @@ public: |
|
|
|
|
|
|
|
|
|
void operator()(const Range& range) const |
|
|
|
|
{ |
|
|
|
|
UMat Lxx, Lxy, Lyy; |
|
|
|
|
Mat Lxx, Lxy, Lyy; |
|
|
|
|
|
|
|
|
|
for (int i = range.start; i < range.end; i++) |
|
|
|
|
{ |
|
|
|
@ -670,16 +656,16 @@ public: |
|
|
|
|
const Evolution &e = (*evolution_)[i]; |
|
|
|
|
Mat &kpts = (*keypoints_by_layers_)[i]; |
|
|
|
|
// this mask will hold positions of keypoints in this level
|
|
|
|
|
kpts = Mat::zeros(e.Mdet.size(), CV_8UC1); |
|
|
|
|
kpts = Mat::zeros(e.Ldet.size(), CV_8UC1); |
|
|
|
|
|
|
|
|
|
// if border is too big we shouldn't search any keypoints
|
|
|
|
|
if (e.border + 1 >= e.Ldet.rows) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
const float * prev = e.Mdet.ptr<float>(e.border - 1); |
|
|
|
|
const float * curr = e.Mdet.ptr<float>(e.border ); |
|
|
|
|
const float * next = e.Mdet.ptr<float>(e.border + 1); |
|
|
|
|
const float * ldet = e.Mdet.ptr<float>(); |
|
|
|
|
const float * prev = e.Ldet.ptr<float>(e.border - 1); |
|
|
|
|
const float * curr = e.Ldet.ptr<float>(e.border ); |
|
|
|
|
const float * next = e.Ldet.ptr<float>(e.border + 1); |
|
|
|
|
const float * ldet = e.Ldet.ptr<float>(); |
|
|
|
|
uchar *mask = kpts.ptr<uchar>(); |
|
|
|
|
const int search_radius = e.sigma_size; // size of keypoint in this level
|
|
|
|
|
|
|
|
|
@ -743,8 +729,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye |
|
|
|
|
const Mat &keypoints = keypoints_by_layers[i]; |
|
|
|
|
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>(); |
|
|
|
|
uchar *const kpts_prev = keypoints_by_layers[i-1].ptr<uchar>(); |
|
|
|
|
const float *const ldet = evolution_[i].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet_prev = evolution_[i-1].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet = evolution_[i].Ldet.ptr<float>(); |
|
|
|
|
const float *const ldet_prev = evolution_[i-1].Ldet.ptr<float>(); |
|
|
|
|
// ratios are just powers of 2
|
|
|
|
|
const int diff_ratio = (int)evolution_[i].octave_ratio / (int)evolution_[i-1].octave_ratio; |
|
|
|
|
const int search_radius = evolution_[i].sigma_size * diff_ratio; // size of keypoint in this level
|
|
|
|
@ -775,8 +761,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye |
|
|
|
|
const Mat &keypoints = keypoints_by_layers[i]; |
|
|
|
|
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>(); |
|
|
|
|
uchar *const kpts_next = keypoints_by_layers[i+1].ptr<uchar>(); |
|
|
|
|
const float *const ldet = evolution_[i].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet_next = evolution_[i+1].Mdet.ptr<float>(); |
|
|
|
|
const float *const ldet = evolution_[i].Ldet.ptr<float>(); |
|
|
|
|
const float *const ldet_next = evolution_[i+1].Ldet.ptr<float>(); |
|
|
|
|
// ratios are just powers of 2, i+1 ratio is always greater or equal to i
|
|
|
|
|
const int diff_ratio = (int)evolution_[i+1].octave_ratio / (int)evolution_[i].octave_ratio; |
|
|
|
|
const int search_radius = evolution_[i+1].sigma_size; // size of keypoints in upper level
|
|
|
|
@ -814,7 +800,7 @@ void AKAZEFeatures::Do_Subpixel_Refinement( |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < keypoints_by_layers.size(); i++) { |
|
|
|
|
const Evolution &e = evolution_[i]; |
|
|
|
|
const float * const ldet = e.Mdet.ptr<float>(); |
|
|
|
|
const float * const ldet = e.Ldet.ptr<float>(); |
|
|
|
|
const float ratio = e.octave_ratio; |
|
|
|
|
const int cols = e.Ldet.cols; |
|
|
|
|
const Mat& keypoints = keypoints_by_layers[i]; |
|
|
|
@ -1308,7 +1294,7 @@ void Compute_Main_Orientation(KeyPoint& kpt, const std::vector<Evolution>& evolu |
|
|
|
|
// Sample derivatives responses for the points within radius of 6*scale
|
|
|
|
|
const int ang_size = 109; |
|
|
|
|
float resX[ang_size], resY[ang_size]; |
|
|
|
|
Sample_Derivative_Response_Radius6(e.Mx, e.My, x0, y0, scale, resX, resY); |
|
|
|
|
Sample_Derivative_Response_Radius6(e.Lx, e.Ly, x0, y0, scale, resX, resY); |
|
|
|
|
|
|
|
|
|
// Compute the angle of each gradient vector
|
|
|
|
|
float Ang[ang_size]; |
|
|
|
@ -1445,8 +1431,8 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const |
|
|
|
|
ratio = (float)(1 << kpt.octave); |
|
|
|
|
scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
yf = kpt.pt.y / ratio; |
|
|
|
|
xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
@ -1575,8 +1561,8 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f |
|
|
|
|
scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
angle = kpt.angle * static_cast<float>(CV_PI / 180.f); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
yf = kpt.pt.y / ratio; |
|
|
|
|
xf = kpt.pt.x / ratio; |
|
|
|
|
co = cos(angle); |
|
|
|
@ -1708,9 +1694,9 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons |
|
|
|
|
ratio = (float)(1 << kpt.octave); |
|
|
|
|
scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
yf = kpt.pt.y / ratio; |
|
|
|
|
xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
@ -1795,9 +1781,9 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st |
|
|
|
|
int pattern_size = options_->descriptor_pattern_size; |
|
|
|
|
int chan = options_->descriptor_channels; |
|
|
|
|
int valpos = 0; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
|
|
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
|
|
|
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
|
|
|
@ -1944,9 +1930,9 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& |
|
|
|
|
int scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
float angle = kpt.angle * static_cast<float>(CV_PI / 180.f); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
float yf = kpt.pt.y / ratio; |
|
|
|
|
float xf = kpt.pt.x / ratio; |
|
|
|
|
float co = cos(angle); |
|
|
|
@ -2051,9 +2037,9 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset( |
|
|
|
|
float ratio = (float)(1 << kpt.octave); |
|
|
|
|
int scale = cvRound(0.5f*kpt.size / ratio); |
|
|
|
|
const int level = kpt.class_id; |
|
|
|
|
Mat Lx = evolution[level].Mx; |
|
|
|
|
Mat Ly = evolution[level].My; |
|
|
|
|
Mat Lt = evolution[level].Mt; |
|
|
|
|
const Mat Lx = evolution[level].Lx; |
|
|
|
|
const Mat Ly = evolution[level].Ly; |
|
|
|
|
const Mat Lt = evolution[level].Lt; |
|
|
|
|
float yf = kpt.pt.y / ratio; |
|
|
|
|
float xf = kpt.pt.x / ratio; |
|
|
|
|
|
|
|
|
|