Fixed some issues found by static analysis (4th round)

pull/9038/head
Maksim Shabunin 7 years ago
parent 64b483c65b
commit e0393f8557
  1. 2
      modules/calib3d/src/ap3p.h
  2. 2
      modules/calib3d/src/epnp.cpp
  3. 2
      modules/calib3d/src/upnp.cpp
  4. 4
      modules/core/include/opencv2/core/cvstd.hpp
  5. 16
      modules/core/src/matrix.cpp
  6. 2
      modules/dnn/src/layers/convolution_layer.cpp
  7. 2
      modules/dnn/src/layers/eltwise_layer.cpp
  8. 2
      modules/dnn/src/layers/fully_connected_layer.cpp
  9. 2
      modules/dnn/src/layers/permute_layer.cpp
  10. 12
      modules/dnn/src/layers/pooling_layer.cpp
  11. 8
      modules/dnn/src/torch/THDiskFile.cpp
  12. 1
      modules/features2d/src/brisk.cpp
  13. 1
      modules/imgcodecs/src/bitstrm.cpp
  14. 1
      modules/imgproc/src/approx.cpp
  15. 4
      modules/imgproc/src/color.cpp
  16. 12
      modules/imgproc/src/contours.cpp
  17. 3
      modules/imgproc/src/convhull.cpp
  18. 1
      modules/imgproc/src/drawing.cpp
  19. 6
      modules/imgproc/src/emd.cpp
  20. 52
      modules/imgproc/src/histogram.cpp
  21. 2
      modules/imgproc/src/thresh.cpp
  22. 8
      modules/imgproc/src/undistort.cpp
  23. 1
      modules/objdetect/include/opencv2/objdetect/objdetect_c.h
  24. 3
      modules/objdetect/src/detection_based_tracker.cpp
  25. 8
      modules/objdetect/src/haar.cpp
  26. 14
      modules/objdetect/src/hog.cpp
  27. 4
      modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
  28. 38
      modules/videoio/src/cap_ffmpeg_impl.hpp
  29. 1
      modules/videoio/src/cap_mjpeg_decoder.cpp

@ -33,7 +33,7 @@ private:
double fx, fy, cx, cy;
double inv_fx, inv_fy, cx_fx, cy_fy;
public:
ap3p() {}
ap3p() : fx(0), fy(0), cx(0), cy(0), inv_fx(0), inv_fy(0), cx_fx(0), cy_fy(0) {}
ap3p(double fx, double fy, double cx, double cy);

@ -525,6 +525,8 @@ void epnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
{
const int nr = A->rows;
const int nc = A->cols;
if (nc <= 0 || nr <= 0)
return;
if (max_nr != 0 && max_nr < nr)
{

@ -720,6 +720,8 @@ void upnp::qr_solve(Mat * A, Mat * b, Mat * X)
{
const int nr = A->rows;
const int nc = A->cols;
if (nr <= 0 || nc <= 0)
return;
if (max_nr != 0 && max_nr < nr)
{

@ -49,7 +49,6 @@
#endif
#include "opencv2/core/cvdef.h"
#include <cstddef>
#include <cstring>
#include <cctype>
@ -959,8 +958,9 @@ size_t String::find_last_of(const char* s, size_t pos) const
inline
String String::toLowerCase() const
{
if (!cstr_)
return String();
String res(cstr_, len_);
for (size_t i = 0; i < len_; ++i)
res.cstr_[i] = (char) ::tolower(cstr_[i]);

@ -5699,13 +5699,20 @@ double norm( const SparseMat& src, int normType )
{
if( normType == NORM_INF )
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
result = std::max(result, std::abs((double)it.value<float>()));
}
else if( normType == NORM_L1 )
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
result += std::abs(it.value<float>());
}
else
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
double v = it.value<float>();
result += v*v;
}
@ -5714,13 +5721,20 @@ double norm( const SparseMat& src, int normType )
{
if( normType == NORM_INF )
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
result = std::max(result, std::abs(it.value<double>()));
}
else if( normType == NORM_L1 )
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
result += std::abs(it.value<double>());
}
else
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
double v = it.value<double>();
result += v*v;
}
@ -5747,6 +5761,7 @@ void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _mi
float minval = FLT_MAX, maxval = -FLT_MAX;
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
float v = it.value<float>();
if( v < minval )
{
@ -5769,6 +5784,7 @@ void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _mi
double minval = DBL_MAX, maxval = -DBL_MAX;
for( i = 0; i < N; i++, ++it )
{
CV_Assert(it.ptr);
double v = it.value<double>();
if( v < minval )
{

@ -289,7 +289,7 @@ public:
ParallelConv()
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
is1x1_(false), useAVX2(false)
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX2(false)
{}
static void run( const Mat& input, Mat& output, const Mat& weights,

@ -120,7 +120,7 @@ public:
int nstripes;
const ActivationLayer* activ;
EltwiseInvoker() {}
EltwiseInvoker() : srcs(0), nsrcs(0), dst(0), coeffs(0), op(EltwiseLayer::PROD), nstripes(0), activ(0) {}
static void run(const Mat** srcs, int nsrcs, Mat& dst,
const std::vector<int>& coeffs, EltwiseOp op,

@ -119,7 +119,7 @@ public:
class FullyConnected : public ParallelLoopBody
{
public:
FullyConnected() {}
FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX2(false) {}
static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
Mat& dstMat, const ActivationLayer* activ, int nstripes)

@ -195,7 +195,7 @@ public:
parallel_for_(Range(0, nstripes), p, nstripes);
}
PermuteInvoker() {}
PermuteInvoker() : inp(0), out(0), order(0), nstripes(0) {}
void operator()(const Range& r) const
{

@ -147,7 +147,7 @@ public:
std::vector<int> ofsbuf;
int poolingType;
PoolingInvoker() {}
PoolingInvoker() : src(0), dst(0), mask(0), nstripes(0), computeMaxIdx(0), poolingType(PoolingLayer::MAX) {}
static void run(const Mat& src, Mat& dst, Mat& mask, Size kernel,
Size stride, Size pad, int poolingType,
@ -263,8 +263,11 @@ public:
}
v_store(dstData + x0, max_val0);
v_store(dstData + x0 + 4, max_val1);
v_store(dstMaskData + x0, max_idx0);
v_store(dstMaskData + x0 + 4, max_idx1);
if (dstMaskData)
{
v_store(dstMaskData + x0, max_idx0);
v_store(dstMaskData + x0 + 4, max_idx1);
}
x0 += 7;
}
else
@ -350,7 +353,8 @@ public:
}
dstData[x0] = max_val;
dstMaskData[x0] = max_index;
if (dstMaskData)
dstMaskData[x0] = max_index;
}
else
{

@ -328,6 +328,8 @@ static long THDiskFile_readLong(THFile *self, int64 *data, long n)
{
int big_endian = !THDiskFile_isLittleEndianCPU();
int32_t *buffer = (int32_t*)THAlloc(8*n);
if (!buffer)
THError("can not allocate buffer");
nread = fread__(buffer, 8, n, dfself->handle);
long i;
for(i = nread; i > 0; i--)
@ -389,6 +391,8 @@ static long THDiskFile_readString(THFile *self, const char *format, char **str_)
total += TBRS_BSZ;
p = (char*)THRealloc(p, total);
}
if (p == NULL)
THError("read error: failed to allocate buffer");
pos += fread(p+pos, 1, total-pos, dfself->handle);
if (pos < total) /* eof? */
{
@ -502,9 +506,13 @@ THFile *THDiskFile_new(const char *name, const char *mode, int isQuiet)
}
self = (THDiskFile*)THAlloc(sizeof(THDiskFile));
if (!self)
THError("cannot allocate memory for self");
self->handle = handle;
self->name = (char*)THAlloc(strlen(name)+1);
if (!self->name)
THError("cannot allocate memory for self->name");
strcpy(self->name, name);
self->isNativeEncoding = 1;
self->longSize = 0;

@ -776,6 +776,7 @@ BRISK_Impl::computeDescriptorsAndOrOrientation(InputArray _image, InputArray _ma
const BriskShortPair* max = shortPairs_ + noShortPairs_;
for (BriskShortPair* iter = shortPairs_; iter < max; ++iter)
{
CV_Assert(iter->i < points_ && iter->j < points_);
t1 = *(_values + iter->i);
t2 = *(_values + iter->j);
if (t1 > t2)

@ -337,6 +337,7 @@ WBaseStream::WBaseStream()
{
m_start = m_end = m_current = 0;
m_file = 0;
m_block_pos = 0;
m_block_size = BS_DEF_BLOCK_SIZE;
m_is_opened = false;
m_buf = 0;

@ -83,6 +83,7 @@ CvSeq* icvApproximateChainTC89( CvChain* chain, int header_size,
return cvEndWriteSeq( &writer );
}
reader.code = 0;
cvStartReadChainPoints( chain, &reader );
temp.next = 0;

@ -4486,7 +4486,7 @@ struct RGB2HSV_b
{
int b = src[bidx], g = src[1], r = src[bidx^2];
int h, s, v = b;
int vmin = b, diff;
int vmin = b;
int vr, vg;
CV_CALC_MAX_8U( v, g );
@ -4494,7 +4494,7 @@ struct RGB2HSV_b
CV_CALC_MIN_8U( vmin, g );
CV_CALC_MIN_8U( vmin, r );
diff = v - vmin;
uchar diff = saturate_cast<uchar>(v - vmin);
vr = v == r ? -1 : 0;
vg = v == g ? -1 : 0;

@ -557,12 +557,12 @@ icvFetchContour( schar *ptr,
else
{
i3 = i0;
CV_Assert(i3 != NULL);
prev_s = s ^ 4;
/* follow border */
for( ;; )
{
CV_Assert(i3 != NULL);
s_end = s;
s = std::min(s, MAX_SIZE - 1);
@ -652,7 +652,6 @@ icvTraceContour( schar *ptr, int step, schar *stop_ptr, int is_hole )
while( *i1 == 0 && s != s_end );
i3 = i0;
CV_Assert(i3 != NULL);
/* check single pixel domain */
if( s != s_end )
@ -660,6 +659,7 @@ icvTraceContour( schar *ptr, int step, schar *stop_ptr, int is_hole )
/* follow border */
for( ;; )
{
CV_Assert(i3 != NULL);
s = std::min(s, MAX_SIZE - 1);
while( s < MAX_SIZE - 1 )
@ -739,12 +739,14 @@ icvFetchContourEx( schar* ptr,
/* follow border */
for( ;; )
{
CV_Assert(i3 != NULL);
s_end = s;
s = std::min(s, MAX_SIZE - 1);
while( s < MAX_SIZE - 1 )
{
i4 = i3 + deltas[++s];
CV_Assert(i4 != NULL);
if( *i4 != 0 )
break;
}
@ -815,6 +817,7 @@ icvFetchContourEx( schar* ptr,
static int
icvTraceContour_32s( int *ptr, int step, int *stop_ptr, int is_hole )
{
CV_Assert(ptr != NULL);
int deltas[MAX_SIZE];
int *i0 = ptr, *i1, *i3, *i4 = NULL;
int s, s_end;
@ -844,12 +847,14 @@ icvTraceContour_32s( int *ptr, int step, int *stop_ptr, int is_hole )
/* follow border */
for( ;; )
{
CV_Assert(i3 != NULL);
s_end = s;
s = std::min(s, MAX_SIZE - 1);
while( s < MAX_SIZE - 1 )
{
i4 = i3 + deltas[++s];
CV_Assert(i4 != NULL);
if( (*i4 & value_mask) == ccomp_val )
break;
}
@ -873,6 +878,7 @@ icvFetchContourEx_32s( int* ptr,
int _method,
CvRect* _rect )
{
CV_Assert(ptr != NULL);
int deltas[MAX_SIZE];
CvSeqWriter writer;
int *i0 = ptr, *i1, *i3, *i4;
@ -926,11 +932,13 @@ icvFetchContourEx_32s( int* ptr,
/* follow border */
for( ;; )
{
CV_Assert(i3 != NULL);
s_end = s;
do
{
i4 = i3 + deltas[++s];
CV_Assert(i4 != NULL);
}
while( (*i4 & value_mask) != ccomp_val && ( s < MAX_SIZE - 1 ) );
s &= 7;

@ -584,7 +584,7 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
hull = cvMakeSeqHeaderForArray(
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr,
sizeof(hull_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
mat->cols + mat->rows - 1, &hull_header, &hullblock );
}
@ -664,6 +664,7 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
int t = *(int*)hull_reader.ptr;
hull_next = CV_GET_SEQ_ELEM( CvPoint, ptseq, t );
}
CV_Assert(hull_next != NULL && hull_cur != NULL);
dx0 = (double)hull_next->x - (double)hull_cur->x;
dy0 = (double)hull_next->y - (double)hull_cur->y;

@ -2600,6 +2600,7 @@ cvDrawContours( void* _img, CvSeq* contour,
void* clr = (contour->flags & CV_SEQ_FLAG_HOLE) == 0 ? ext_buf : hole_buf;
cvStartReadSeq( contour, &reader, 0 );
CV_Assert(reader.ptr != NULL);
if( thickness < 0 )
pts.resize(0);

@ -730,7 +730,7 @@ icvNewSolution( CvEMDState * state )
int i, j;
float min_val = CV_EMD_INF;
int steps;
CvNode2D head, *cur_x, *next_x, *leave_x = 0;
CvNode2D head = {0, {0}, 0, 0}, *cur_x, *next_x, *leave_x = 0;
CvNode2D *enter_x = state->enter_x;
CvNode2D **loop = state->loop;
@ -783,7 +783,7 @@ icvNewSolution( CvEMDState * state )
while( (next_x = cur_x->next[0]) != leave_x )
{
cur_x = next_x;
assert( cur_x );
CV_Assert( cur_x );
}
cur_x->next[0] = next_x->next[0];
state->rows_x[i] = head.next[0];
@ -793,7 +793,7 @@ icvNewSolution( CvEMDState * state )
while( (next_x = cur_x->next[1]) != leave_x )
{
cur_x = next_x;
assert( cur_x );
CV_Assert( cur_x );
}
cur_x->next[1] = next_x->next[1];
state->cols_x[j] = head.next[1];

@ -83,7 +83,7 @@ calcHistLookupTables_8u( const Mat& hist, const SparseMat& shist,
}
}
}
else
else if (ranges)
{
for( i = 0; i < dims; i++ )
{
@ -111,6 +111,10 @@ calcHistLookupTables_8u( const Mat& hist, const SparseMat& shist,
}
}
}
else
{
CV_Error(Error::StsBadArg, "Either ranges, either uniform ranges should be provided");
}
}
@ -938,7 +942,7 @@ calcHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
}
}
}
else
else if (_ranges)
{
// non-uniform histogram
const float* ranges[CV_MAX_DIM];
@ -980,6 +984,10 @@ calcHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
ptrs[i] += deltas[i*2 + 1];
}
}
else
{
CV_Error(Error::StsBadArg, "Either ranges, either uniform ranges should be provided");
}
}
@ -1457,8 +1465,10 @@ void cv::calcHist( const Mat* images, int nimages, const int* channels,
if(histdata != hist.data)
accumulate = false;
CV_IPP_RUN(nimages == 1 && dims == 1 && channels && channels[0] == 0 && _mask.empty() && images[0].dims <= 2,
ipp_calchist(images[0], hist, histSize[0], ranges, uniform, accumulate));
CV_IPP_RUN(
nimages == 1 && dims == 1 && channels && channels[0] == 0
&& _mask.empty() && images[0].dims <= 2 && ranges && ranges[0],
ipp_calchist(images[0], hist, histSize[0], ranges, uniform, accumulate));
Mat ihist = hist;
ihist.flags = (ihist.flags & ~CV_MAT_TYPE_MASK)|CV_32S;
@ -1537,7 +1547,7 @@ calcSparseHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
ptrs[i] += deltas[i*2 + 1];
}
}
else
else if (_ranges)
{
// non-uniform histogram
const float* ranges[CV_MAX_DIM];
@ -1577,6 +1587,10 @@ calcSparseHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
ptrs[i] += deltas[i*2 + 1];
}
}
else
{
CV_Error(Error::StsBadArg, "Either ranges, either uniform ranges should be provided");
}
}
@ -1636,6 +1650,7 @@ static void calcHist( const Mat* images, int nimages, const int* channels,
SparseMatIterator it = hist.begin();
for( i = 0, N = hist.nzcount(); i < N; i++, ++it )
{
CV_Assert(it.ptr != NULL);
Cv32suf* val = (Cv32suf*)it.ptr;
val->i = cvRound(val->f);
}
@ -1666,6 +1681,7 @@ static void calcHist( const Mat* images, int nimages, const int* channels,
SparseMatIterator it = hist.begin();
for( i = 0, N = hist.nzcount(); i < N; i++, ++it )
{
CV_Assert(it.ptr != NULL);
Cv32suf* val = (Cv32suf*)it.ptr;
val->f = (float)val->i;
}
@ -1907,7 +1923,7 @@ calcBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
}
}
}
else
else if (_ranges)
{
// non-uniform histogram
const float* ranges[CV_MAX_DIM];
@ -1949,6 +1965,10 @@ calcBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
ptrs[i] += deltas[i*2 + 1];
}
}
else
{
CV_Error(Error::StsBadArg, "Either ranges, either uniform ranges should be provided");
}
}
@ -2153,7 +2173,7 @@ calcSparseBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas
ptrs[i] += deltas[i*2 + 1];
}
}
else
else if (_ranges)
{
// non-uniform histogram
const float* ranges[CV_MAX_DIM];
@ -2193,6 +2213,10 @@ calcSparseBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas
ptrs[i] += deltas[i*2 + 1];
}
}
else
{
CV_Error(Error::StsBadArg, "Either ranges, either uniform ranges should be provided");
}
}
@ -2260,7 +2284,6 @@ void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
dims, hist.hdr->size, ranges,
uniform, ptrs, deltas, imsize, uniranges );
const double* _uniranges = uniform ? &uniranges[0] : 0;
int depth = images[0].depth();
if( depth == CV_8U )
calcSparseBackProj_8u(ptrs, deltas, imsize, hist, dims, ranges,
@ -2702,12 +2725,14 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
std::swap(PH1, PH2);
SparseMatConstIterator it = PH1->begin();
int N1 = (int)PH1->nzcount(), N2 = (int)PH2->nzcount();
if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT) )
{
for( i = 0; i < N1; i++, ++it )
{
CV_Assert(it.ptr != NULL);
float v1 = it.value<float>();
const SparseMat::Node* node = it.node();
float v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
@ -2723,6 +2748,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
for( i = 0; i < N1; i++, ++it )
{
CV_Assert(it.ptr != NULL);
double v1 = it.value<float>();
const SparseMat::Node* node = it.node();
s12 += v1*PH2->value<float>(node->idx, (size_t*)&node->hashval);
@ -2733,6 +2759,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
it = PH2->begin();
for( i = 0; i < N2; i++, ++it )
{
CV_Assert(it.ptr != NULL);
double v2 = it.value<float>();
s2 += v2;
s22 += v2*v2;
@ -2750,6 +2777,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
{
for( i = 0; i < N1; i++, ++it )
{
CV_Assert(it.ptr != NULL);
float v1 = it.value<float>();
const SparseMat::Node* node = it.node();
float v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
@ -2763,6 +2791,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
for( i = 0; i < N1; i++, ++it )
{
CV_Assert(it.ptr != NULL);
double v1 = it.value<float>();
const SparseMat::Node* node = it.node();
double v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
@ -2772,7 +2801,10 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
it = PH2->begin();
for( i = 0; i < N2; i++, ++it )
{
CV_Assert(it.ptr != NULL);
s2 += it.value<float>();
}
s1 *= s2;
s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.;
@ -2782,6 +2814,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
{
for( i = 0; i < N1; i++, ++it )
{
CV_Assert(it.ptr != NULL);
double v1 = it.value<float>();
const SparseMat::Node* node = it.node();
double v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
@ -3444,7 +3477,10 @@ cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask
cv::SparseMatConstIterator it = sH.begin();
int nz = (int)sH.nzcount();
for( i = 0; i < nz; i++, ++it )
{
CV_Assert(it.ptr != NULL);
*(float*)cvPtrND(sparsemat, it.node()->idx, 0, -2) = (float)*(const int*)it.ptr;
}
}
}

@ -206,7 +206,7 @@ thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type )
if( j_scalar < roi.width )
{
const int thresh_pivot = thresh + 1;
uchar tab[256];
uchar tab[256] = {0};
switch( type )
{
case THRESH_BINARY:

@ -149,6 +149,14 @@ void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoef
double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8];
int j = 0;
if (m1type == CV_16SC2)
CV_Assert(m1 != NULL && m2 != NULL);
else if (m1type == CV_32FC1)
CV_Assert(m1f != NULL && m2f != NULL);
else
CV_Assert(m1 != NULL);
#if CV_AVX2
if( USE_AVX2 )
{

@ -69,6 +69,7 @@ extern "C" {
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
#define CV_HAAR_FEATURE_MAX 3
#define CV_HAAR_STAGE_MAX 1000
typedef struct CvHaarFeature
{

@ -610,7 +610,8 @@ cv::DetectionBasedTracker::DetectionBasedTracker(cv::Ptr<IDetector> mainDetector
&& trackingDetector );
if (mainDetector) {
separateDetectionWork.reset(new SeparateDetectionWork(*this, mainDetector, params));
Ptr<SeparateDetectionWork> tmp(new SeparateDetectionWork(*this, mainDetector, params));
separateDetectionWork.swap(tmp);
}
weightsPositionsSmoothing.push_back(1);

@ -1848,7 +1848,7 @@ icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
sscanf( stage, "%d%n", &count, &dl );
stage += dl;
assert( count > 0 );
CV_Assert( count > 0 && count < CV_HAAR_STAGE_MAX);
cascade->stage_classifier[i].count = count;
cascade->stage_classifier[i].classifier =
(CvHaarClassifier*)cvAlloc( count*sizeof(cascade->stage_classifier[i].classifier[0]));
@ -1862,6 +1862,7 @@ icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
sscanf( stage, "%d%n", &classifier->count, &dl );
stage += dl;
CV_Assert( classifier->count > 0 && classifier->count< CV_HAAR_STAGE_MAX);
classifier->haar_feature = (CvHaarFeature*) cvAlloc(
classifier->count * ( sizeof( *classifier->haar_feature ) +
sizeof( *classifier->threshold ) +
@ -1878,7 +1879,7 @@ icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
sscanf( stage, "%d%n", &rects, &dl );
stage += dl;
assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX );
CV_DbgAssert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX );
for( k = 0; k < rects; k++ )
{
@ -1890,7 +1891,7 @@ icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
stage += dl;
classifier->haar_feature[l].rect[k].r = r;
}
sscanf( stage, "%s%n", str, &dl );
sscanf( stage, "%99s%n", str, &dl );
stage += dl;
classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0;
@ -1926,6 +1927,7 @@ icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
}
stage += dl;
CV_Assert(parent >= 0 && parent < i);
cascade->stage_classifier[i].parent = parent;
cascade->stage_classifier[i].next = next;
cascade->stage_classifier[i].child = -1;

@ -3694,23 +3694,31 @@ void HOGDescriptor::readALTModel(String modelfile)
String eerr("version?");
String efile(__FILE__);
String efunc(__FUNCTION__);
fclose(modelfl);
throw Exception(Error::StsError, eerr, efile, efunc, __LINE__);
}
if(strcmp(version_buffer,"V6.01")) {
String eerr("version doesnot match");
String efile(__FILE__);
String efunc(__FUNCTION__);
fclose(modelfl);
throw Exception(Error::StsError, eerr, efile, efunc, __LINE__);
}
/* read version number */
int version = 0;
if (!fread (&version,sizeof(int),1,modelfl))
{ throw Exception(); }
{
fclose(modelfl);
throw Exception();
}
if (version < 200)
{
String eerr("version doesnot match");
String efile(__FILE__);
String efunc(__FUNCTION__);
fclose(modelfl);
throw Exception();
}
int kernel_type;
@ -3729,6 +3737,7 @@ void HOGDescriptor::readALTModel(String modelfile)
nread=fread(&(coef_const),sizeof(double),1,modelfl);
int l;
nread=fread(&l,sizeof(int),1,modelfl);
CV_Assert(l >= 0 && l < 0xFFFF);
char* custom = new char[l];
nread=fread(custom,sizeof(char),l,modelfl);
delete[] custom;
@ -3749,11 +3758,13 @@ void HOGDescriptor::readALTModel(String modelfile)
detector.clear();
if(kernel_type == 0) { /* linear kernel */
/* save linear wts also */
CV_Assert(totwords + 1 > 0 && totwords < 0xFFFF);
double *linearwt = new double[totwords+1];
int length = totwords;
nread = fread(linearwt, sizeof(double), totwords + 1, modelfl);
if(nread != static_cast<size_t>(length) + 1) {
delete [] linearwt;
fclose(modelfl);
throw Exception();
}
@ -3764,6 +3775,7 @@ void HOGDescriptor::readALTModel(String modelfile)
setSVMDetector(detector);
delete [] linearwt;
} else {
fclose(modelfl);
throw Exception();
}
fclose(modelfl);

@ -397,7 +397,7 @@ template <typename ET, typename IT, typename EW> struct incWithWeight_<Vec<ET, 4
template <typename T, typename IT, typename WT>
static inline void incWithWeight(IT* estimation, IT* weights_sum, WT weight, T p)
{
return incWithWeight_<T, IT, WT>::f(estimation, weights_sum, weight, p);
incWithWeight_<T, IT, WT>::f(estimation, weights_sum, weight, p);
}
template <typename IT, typename UIT, int nc, int nw> struct divByWeightsSum_
@ -434,7 +434,7 @@ template <typename IT, typename UIT, int n> struct divByWeightsSum_<IT, UIT, n,
template <typename IT, typename UIT, int nc, int nw>
static inline void divByWeightsSum(IT* estimation, IT* weights_sum)
{
return divByWeightsSum_<IT, UIT, nc, nw>::f(estimation, weights_sum);
divByWeightsSum_<IT, UIT, nc, nw>::f(estimation, weights_sum);
}
template <typename T, typename IT> struct saturateCastFromArray_

@ -669,13 +669,13 @@ struct ImplMutex::Impl
void ImplMutex::init()
{
impl = (Impl*)malloc(sizeof(Impl));
impl = new Impl();
impl->init();
}
void ImplMutex::destroy()
{
impl->destroy();
free(impl);
delete(impl);
impl = NULL;
}
void ImplMutex::lock() { impl->lock(); }
@ -1387,7 +1387,7 @@ void CvVideoWriter_FFMPEG::init()
static AVFrame * icv_alloc_picture_FFMPEG(int pix_fmt, int width, int height, bool alloc)
{
AVFrame * picture;
uint8_t * picture_buf;
uint8_t * picture_buf = 0;
int size;
#if LIBAVCODEC_BUILD >= (LIBAVCODEC_VERSION_MICRO >= 100 \
@ -1416,6 +1416,7 @@ static AVFrame * icv_alloc_picture_FFMPEG(int pix_fmt, int width, int height, bo
}
else {
}
return picture;
}
@ -1511,6 +1512,8 @@ static AVStream *icv_add_video_stream_FFMPEG(AVFormatContext *oc,
best= p;
}
}
if (best == NULL)
return NULL;
c->time_base.den= best->num;
c->time_base.num= best->den;
}
@ -1796,24 +1799,27 @@ void CvVideoWriter_FFMPEG::close()
av_free(outbuf);
if (!(fmt->flags & AVFMT_NOFILE))
if (oc)
{
/* close the output file */
if (!(fmt->flags & AVFMT_NOFILE))
{
/* close the output file */
#if LIBAVCODEC_VERSION_INT < ((52<<16)+(123<<8)+0)
#if LIBAVCODEC_VERSION_INT >= ((51<<16)+(49<<8)+0)
url_fclose(oc->pb);
url_fclose(oc->pb);
#else
url_fclose(&oc->pb);
url_fclose(&oc->pb);
#endif
#else
avio_close(oc->pb);
avio_close(oc->pb);
#endif
}
}
/* free the stream */
avformat_free_context(oc);
/* free the stream */
avformat_free_context(oc);
}
av_freep(&aligned_input);
@ -2114,6 +2120,8 @@ bool CvVideoWriter_FFMPEG::open( const char * filename, int fourcc,
CvCapture_FFMPEG* cvCreateFileCapture_FFMPEG( const char* filename )
{
CvCapture_FFMPEG* capture = (CvCapture_FFMPEG*)malloc(sizeof(*capture));
if (!capture)
return 0;
capture->init();
if( capture->open( filename ))
return capture;
@ -2158,6 +2166,8 @@ CvVideoWriter_FFMPEG* cvCreateVideoWriter_FFMPEG( const char* filename, int four
int width, int height, int isColor )
{
CvVideoWriter_FFMPEG* writer = (CvVideoWriter_FFMPEG*)malloc(sizeof(*writer));
if (!writer)
return 0;
writer->init();
if( writer->open( filename, fourcc, fps, width, height, isColor != 0 ))
return writer;
@ -2322,6 +2332,8 @@ AVStream* OutputMediaStream_FFMPEG::addVideoStream(AVFormatContext *oc, CV_CODEC
}
}
if (best == NULL)
return NULL;
c->time_base.den= best->num;
c->time_base.num= best->den;
}
@ -2463,6 +2475,8 @@ void OutputMediaStream_FFMPEG::write(unsigned char* data, int size, int keyFrame
struct OutputMediaStream_FFMPEG* create_OutputMediaStream_FFMPEG(const char* fileName, int width, int height, double fps)
{
OutputMediaStream_FFMPEG* stream = (OutputMediaStream_FFMPEG*) malloc(sizeof(OutputMediaStream_FFMPEG));
if (!stream)
return 0;
if (stream->open(fileName, width, height, fps))
return stream;
@ -2730,6 +2744,8 @@ bool InputMediaStream_FFMPEG::read(unsigned char** data, int* size, int* endOfFi
InputMediaStream_FFMPEG* create_InputMediaStream_FFMPEG(const char* fileName, int* codec, int* chroma_format, int* width, int* height)
{
InputMediaStream_FFMPEG* stream = (InputMediaStream_FFMPEG*) malloc(sizeof(InputMediaStream_FFMPEG));
if (!stream)
return 0;
if (stream && stream->open(fileName, codec, chroma_format, width, height))
return stream;

@ -553,6 +553,7 @@ bool AviMjpegStream::parseHdrlList(MjpegInputStream& in_str)
{
m_is_indx_present = ((avi_hdr.dwFlags & 0x10) != 0);
DWORD number_of_streams = avi_hdr.dwStreams;
CV_Assert(number_of_streams < 0xFF);
m_width = avi_hdr.dwWidth;
m_height = avi_hdr.dwHeight;

Loading…
Cancel
Save