Merge pull request #9517 from dkurt:tf_mobilenet

pull/9644/head
Vadim Pisarevsky 7 years ago
commit e012ccda4a
  1. 6
      modules/dnn/include/opencv2/dnn/all_layers.hpp
  2. 1
      modules/dnn/src/init.cpp
  3. 65
      modules/dnn/src/layers/elementwise_layers.cpp
  4. 81
      modules/dnn/src/tensorflow/tf_importer.cpp
  5. 11
      modules/dnn/test/test_tf_importer.cpp

@ -359,6 +359,12 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
static Ptr<ReLULayer> create(const LayerParams &params); static Ptr<ReLULayer> create(const LayerParams &params);
}; };
class CV_EXPORTS ReLU6Layer : public ActivationLayer
{
public:
static Ptr<ReLU6Layer> create(const LayerParams &params);
};
class CV_EXPORTS ChannelsPReLULayer : public ActivationLayer class CV_EXPORTS ChannelsPReLULayer : public ActivationLayer
{ {
public: public:

@ -94,6 +94,7 @@ void initializeLayerFactory()
CV_DNN_REGISTER_LAYER_CLASS(LPNormalize, LPNormalizeLayer); CV_DNN_REGISTER_LAYER_CLASS(LPNormalize, LPNormalizeLayer);
CV_DNN_REGISTER_LAYER_CLASS(ReLU, ReLULayer); CV_DNN_REGISTER_LAYER_CLASS(ReLU, ReLULayer);
CV_DNN_REGISTER_LAYER_CLASS(ReLU6, ReLU6Layer);
CV_DNN_REGISTER_LAYER_CLASS(ChannelsPReLU, ChannelsPReLULayer); CV_DNN_REGISTER_LAYER_CLASS(ChannelsPReLU, ChannelsPReLULayer);
CV_DNN_REGISTER_LAYER_CLASS(Sigmoid, SigmoidLayer); CV_DNN_REGISTER_LAYER_CLASS(Sigmoid, SigmoidLayer);
CV_DNN_REGISTER_LAYER_CLASS(TanH, TanHLayer); CV_DNN_REGISTER_LAYER_CLASS(TanH, TanHLayer);

@ -248,6 +248,62 @@ struct ReLUFunctor
int64 getFLOPSPerElement() const { return 1; } int64 getFLOPSPerElement() const { return 1; }
}; };
struct ReLU6Functor
{
typedef ReLU6Layer Layer;
float minValue, maxValue;
ReLU6Functor(float minValue_ = 0.0f, float maxValue_ = 6.0f)
: minValue(minValue_), maxValue(maxValue_)
{
CV_Assert(minValue <= maxValue);
}
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
int i = 0;
#if CV_SIMD128
v_float32x4 minV = v_setall_f32(minValue), maxV = v_setall_f32(maxValue);
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_min(v_max(minV, x0), maxV);
x1 = v_min(v_max(minV, x1), maxV);
x2 = v_min(v_max(minV, x2), maxV);
x3 = v_min(v_max(minV, x3), maxV);
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
if (x >= minValue)
dstptr[i] = x <= maxValue ? x : maxValue;
else
dstptr[i] = minValue;
}
}
}
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = clamp(input, minValue, maxValue);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 2; }
};
struct TanHFunctor struct TanHFunctor
{ {
typedef TanHLayer Layer; typedef TanHLayer Layer;
@ -517,6 +573,15 @@ Ptr<ReLULayer> ReLULayer::create(const LayerParams& params)
return l; return l;
} }
Ptr<ReLU6Layer> ReLU6Layer::create(const LayerParams& params)
{
float minValue = params.get<float>("min_value", 0.0f);
float maxValue = params.get<float>("max_value", 6.0f);
Ptr<ReLU6Layer> l(new ElementWiseLayer<ReLU6Functor>(ReLU6Functor(minValue, maxValue)));
l->setParamsFrom(params);
return l;
}
Ptr<TanHLayer> TanHLayer::create(const LayerParams& params) Ptr<TanHLayer> TanHLayer::create(const LayerParams& params)
{ {
Ptr<TanHLayer> l(new ElementWiseLayer<TanHFunctor>()); Ptr<TanHLayer> l(new ElementWiseLayer<TanHFunctor>());

@ -85,11 +85,38 @@ static Mat getTensorContent(const tensorflow::TensorProto &tensor)
switch (tensor.dtype()) switch (tensor.dtype())
{ {
case tensorflow::DT_FLOAT: case tensorflow::DT_FLOAT:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone(); return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<float>& field = tensor.float_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_DOUBLE: case tensorflow::DT_DOUBLE:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone(); return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<double>& field = tensor.double_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_64FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_INT32: case tensorflow::DT_INT32:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone(); return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<int32_t>& field = tensor.int_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32SC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_HALF: case tensorflow::DT_HALF:
{ {
Mat halfs; Mat halfs;
@ -573,7 +600,7 @@ void TFImporter::populateNet(Net dstNet)
if(layers_to_ignore.find(li) != layers_to_ignore.end()) if(layers_to_ignore.find(li) != layers_to_ignore.end())
continue; continue;
if (type == "Conv2D" || type == "SpaceToBatchND") if (type == "Conv2D" || type == "SpaceToBatchND" || type == "DepthwiseConv2dNative")
{ {
// The first node of dilated convolution subgraph. // The first node of dilated convolution subgraph.
// Extract input node, dilation rate and paddings. // Extract input node, dilation rate and paddings.
@ -621,7 +648,28 @@ void TFImporter::populateNet(Net dstNet)
} }
kernelFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]); kernelFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]);
const int* kshape = layerParams.blobs[0].size.p; int* kshape = layerParams.blobs[0].size.p;
if (type == "DepthwiseConv2dNative")
{
const int chMultiplier = kshape[0];
const int inCh = kshape[1];
const int height = kshape[2];
const int width = kshape[3];
Mat copy = layerParams.blobs[0].clone();
float* src = (float*)copy.data;
float* dst = (float*)layerParams.blobs[0].data;
for (int i = 0; i < chMultiplier; ++i)
for (int j = 0; j < inCh; ++j)
for (int s = 0; s < height * width; ++s)
{
int src_i = (i * inCh + j) * height * width + s;
int dst_i = (j * chMultiplier + i) * height* width + s;
dst[dst_i] = src[src_i];
}
kshape[0] = inCh * chMultiplier;
kshape[1] = 1;
}
layerParams.set("kernel_h", kshape[2]); layerParams.set("kernel_h", kshape[2]);
layerParams.set("kernel_w", kshape[3]); layerParams.set("kernel_w", kshape[3]);
layerParams.set("num_output", kshape[0]); layerParams.set("num_output", kshape[0]);
@ -689,6 +737,10 @@ void TFImporter::populateNet(Net dstNet)
layerParams.blobs.resize(1); layerParams.blobs.resize(1);
StrIntVector next_layers = getNextLayers(net, name, "BiasAdd"); StrIntVector next_layers = getNextLayers(net, name, "BiasAdd");
if (next_layers.empty())
{
next_layers = getNextLayers(net, name, "Add");
}
if (next_layers.size() == 1) { if (next_layers.size() == 1) {
layerParams.set("bias_term", true); layerParams.set("bias_term", true);
layerParams.blobs.resize(2); layerParams.blobs.resize(2);
@ -840,20 +892,20 @@ void TFImporter::populateNet(Net dstNet)
{ {
// Multiplication by constant. // Multiplication by constant.
CV_Assert(layer.input_size() == 2); CV_Assert(layer.input_size() == 2);
Mat scaleMat = getTensorContent(getConstBlob(layer, value_id));
CV_Assert(scaleMat.type() == CV_32FC1);
float scale; int id;
if (!getConstBlob(layer, value_id).float_val().empty()) if (scaleMat.total() == 1) // is a scalar.
scale = getConstBlob(layer, value_id).float_val()[0];
else
{ {
Mat scaleMat; layerParams.set("scale", scaleMat.at<float>(0));
blobFromTensor(getConstBlob(layer, value_id), scaleMat); id = dstNet.addLayer(name, "Power", layerParams);
CV_Assert(scaleMat.total() == 1 && scaleMat.type() == CV_32FC1); }
scale = scaleMat.at<float>(0, 0); else // is a vector
{
layerParams.blobs.resize(1, scaleMat);
id = dstNet.addLayer(name, "Scale", layerParams);
} }
layerParams.set("scale", scale);
int id = dstNet.addLayer(name, "Power", layerParams);
layer_id[name] = id; layer_id[name] = id;
Pin inp0 = parsePin(layer.input(0)); Pin inp0 = parsePin(layer.input(0));
@ -1006,12 +1058,13 @@ void TFImporter::populateNet(Net dstNet)
} }
else if (type == "Abs" || type == "Tanh" || type == "Sigmoid" || else if (type == "Abs" || type == "Tanh" || type == "Sigmoid" ||
type == "Relu" || type == "Elu" || type == "Softmax" || type == "Relu" || type == "Elu" || type == "Softmax" ||
type == "Identity") type == "Identity" || type == "Relu6")
{ {
std::string dnnType = type; std::string dnnType = type;
if (type == "Abs") dnnType = "AbsVal"; if (type == "Abs") dnnType = "AbsVal";
else if (type == "Tanh") dnnType = "TanH"; else if (type == "Tanh") dnnType = "TanH";
else if (type == "Relu") dnnType = "ReLU"; else if (type == "Relu") dnnType = "ReLU";
else if (type == "Relu6") dnnType = "ReLU6";
else if (type == "Elu") dnnType = "ELU"; else if (type == "Elu") dnnType = "ELU";
int id = dstNet.addLayer(name, dnnType, layerParams); int id = dstNet.addLayer(name, dnnType, layerParams);

@ -93,11 +93,12 @@ static void runTensorFlowNet(const std::string& prefix,
normAssert(target, output, "", l1, lInf); normAssert(target, output, "", l1, lInf);
} }
TEST(Test_TensorFlow, single_conv) TEST(Test_TensorFlow, conv)
{ {
runTensorFlowNet("single_conv"); runTensorFlowNet("single_conv");
runTensorFlowNet("atrous_conv2d_valid"); runTensorFlowNet("atrous_conv2d_valid");
runTensorFlowNet("atrous_conv2d_same"); runTensorFlowNet("atrous_conv2d_same");
runTensorFlowNet("depthwise_conv2d");
} }
TEST(Test_TensorFlow, padding) TEST(Test_TensorFlow, padding)
@ -116,8 +117,9 @@ TEST(Test_TensorFlow, pad_and_concat)
runTensorFlowNet("pad_and_concat"); runTensorFlowNet("pad_and_concat");
} }
TEST(Test_TensorFlow, fused_batch_norm) TEST(Test_TensorFlow, batch_norm)
{ {
runTensorFlowNet("batch_norm");
runTensorFlowNet("fused_batch_norm"); runTensorFlowNet("fused_batch_norm");
} }
@ -133,6 +135,11 @@ TEST(Test_TensorFlow, deconvolution)
runTensorFlowNet("deconvolution"); runTensorFlowNet("deconvolution");
} }
TEST(Test_TensorFlow, matmul)
{
runTensorFlowNet("matmul");
}
TEST(Test_TensorFlow, fp16) TEST(Test_TensorFlow, fp16)
{ {
const float l1 = 1e-3; const float l1 = 1e-3;

Loading…
Cancel
Save