mirror of https://github.com/opencv/opencv.git
Merge pull request #14107 from adityak2920:aditya
Adding python codes to samples/python * Python version of samples: - laplace.py - drawing.py * Update drawing.py * Update drawing.py * Update drawing.py * Update laplace.py * Update laplace.py * Update drawing.py * Update drawing.py * Update laplace.py * samples * drawing * drawing * drawing.pypull/16610/head
parent
4d14307f5d
commit
e007d93d93
2 changed files with 260 additions and 0 deletions
@ -0,0 +1,191 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
''' |
||||||
|
This program demonstrates OpenCV drawing and text output functions by drawing different shapes and text strings |
||||||
|
Usage : |
||||||
|
python3 drawing.py |
||||||
|
Press any button to exit |
||||||
|
''' |
||||||
|
|
||||||
|
# Python 2/3 compatibility |
||||||
|
from __future__ import print_function |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 as cv |
||||||
|
|
||||||
|
# Drawing Lines |
||||||
|
def lines(): |
||||||
|
for i in range(NUMBER*2): |
||||||
|
pt1, pt2 = [], [] |
||||||
|
pt1.append(np.random.randint(x1, x2)) |
||||||
|
pt1.append(np.random.randint(y1, y2)) |
||||||
|
pt2.append(np.random.randint(x1, x2)) |
||||||
|
pt2.append(np.random.randint(y1, y2)) |
||||||
|
color = "%06x" % np.random.randint(0, 0xFFFFFF) |
||||||
|
color = tuple(int(color[i:i+2], 16) for i in (0, 2 ,4)) |
||||||
|
arrowed = np.random.randint(0, 6) |
||||||
|
if (arrowed<3): |
||||||
|
cv.line(image, tuple(pt1), tuple(pt2), color, np.random.randint(1, 10), lineType) |
||||||
|
else: |
||||||
|
cv.arrowedLine(image, tuple(pt1), tuple(pt2), color, np.random.randint(1, 10), lineType) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
if cv.waitKey(DELAY)>=0: |
||||||
|
return |
||||||
|
|
||||||
|
# Drawing Rectangle |
||||||
|
def rectangle(): |
||||||
|
for i in range(NUMBER*2): |
||||||
|
pt1, pt2 = [], [] |
||||||
|
pt1.append(np.random.randint(x1, x2)) |
||||||
|
pt1.append(np.random.randint(y1, y2)) |
||||||
|
pt2.append(np.random.randint(x1, x2)) |
||||||
|
pt2.append(np.random.randint(y1, y2)) |
||||||
|
color = "%06x" % np.random.randint(0, 0xFFFFFF) |
||||||
|
color = tuple(int(color[i:i+2], 16) for i in (0, 2 ,4)) |
||||||
|
thickness = np.random.randint(-3, 10) |
||||||
|
marker = np.random.randint(0, 10) |
||||||
|
marker_size = np.random.randint(30, 80) |
||||||
|
|
||||||
|
if (marker > 5): |
||||||
|
cv.rectangle(image, tuple(pt1), tuple(pt2), color, max(thickness, -1), lineType) |
||||||
|
else: |
||||||
|
cv.drawMarker(image, tuple(pt1), color, marker, marker_size) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
if cv.waitKey(DELAY)>=0: |
||||||
|
return |
||||||
|
|
||||||
|
# Drawing ellipse |
||||||
|
def ellipse(): |
||||||
|
for i in range(NUMBER*2): |
||||||
|
center = [] |
||||||
|
center.append(np.random.randint(x1, x2)) |
||||||
|
center.append(np.random.randint(x1, x2)) |
||||||
|
axes = [] |
||||||
|
axes.append(np.random.randint(0, 200)) |
||||||
|
axes.append(np.random.randint(0, 200)) |
||||||
|
angle = np.random.randint(0, 180) |
||||||
|
color = "%06x" % np.random.randint(0, 0xFFFFFF) |
||||||
|
color = tuple(int(color[i:i+2], 16) for i in (0, 2 ,4)) |
||||||
|
thickness = np.random.randint(-1, 9) |
||||||
|
cv.ellipse(image, tuple(center), tuple(axes), angle, angle-100, angle + 200, color, thickness, lineType) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
if cv.waitKey(DELAY)>=0: |
||||||
|
return |
||||||
|
|
||||||
|
# Drawing Polygonal Curves |
||||||
|
def polygonal(): |
||||||
|
for i in range(NUMBER): |
||||||
|
pt = [(0, 0)]*6 |
||||||
|
pt = np.resize(pt, (2, 3, 2)) |
||||||
|
pt[0][0][0] = np.random.randint(x1, x2) |
||||||
|
pt[0][0][1] = np.random.randint(y1, y2) |
||||||
|
pt[0][1][0] = np.random.randint(x1, x2) |
||||||
|
pt[0][1][1] = np.random.randint(y1, y2) |
||||||
|
pt[0][2][0] = np.random.randint(x1, x2) |
||||||
|
pt[0][2][1] = np.random.randint(y1, y2) |
||||||
|
pt[1][0][0] = np.random.randint(x1, x2) |
||||||
|
pt[1][0][1] = np.random.randint(y1, y2) |
||||||
|
pt[1][1][0] = np.random.randint(x1, x2) |
||||||
|
pt[1][1][1] = np.random.randint(y1, y2) |
||||||
|
pt[1][2][0] = np.random.randint(x1, x2) |
||||||
|
pt[1][2][1] = np.random.randint(y1, y2) |
||||||
|
color = "%06x" % np.random.randint(0, 0xFFFFFF) |
||||||
|
color = tuple(int(color[i:i+2], 16) for i in (0, 2 ,4)) |
||||||
|
alist = [] |
||||||
|
for k in pt[0]: |
||||||
|
alist.append(k) |
||||||
|
for k in pt[1]: |
||||||
|
alist.append(k) |
||||||
|
ppt = np.array(alist) |
||||||
|
cv.polylines(image, [ppt], True, color, thickness = np.random.randint(1, 10), lineType = lineType) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
if cv.waitKey(DELAY) >= 0: |
||||||
|
return |
||||||
|
|
||||||
|
# fills an area bounded by several polygonal contours |
||||||
|
def fill(): |
||||||
|
for i in range(NUMBER): |
||||||
|
pt = [(0, 0)]*6 |
||||||
|
pt = np.resize(pt, (2, 3, 2)) |
||||||
|
pt[0][0][0] = np.random.randint(x1, x2) |
||||||
|
pt[0][0][1] = np.random.randint(y1, y2) |
||||||
|
pt[0][1][0] = np.random.randint(x1, x2) |
||||||
|
pt[0][1][1] = np.random.randint(y1, y2) |
||||||
|
pt[0][2][0] = np.random.randint(x1, x2) |
||||||
|
pt[0][2][1] = np.random.randint(y1, y2) |
||||||
|
pt[1][0][0] = np.random.randint(x1, x2) |
||||||
|
pt[1][0][1] = np.random.randint(y1, y2) |
||||||
|
pt[1][1][0] = np.random.randint(x1, x2) |
||||||
|
pt[1][1][1] = np.random.randint(y1, y2) |
||||||
|
pt[1][2][0] = np.random.randint(x1, x2) |
||||||
|
pt[1][2][1] = np.random.randint(y1, y2) |
||||||
|
color = "%06x" % np.random.randint(0, 0xFFFFFF) |
||||||
|
color = tuple(int(color[i:i+2], 16) for i in (0, 2 ,4)) |
||||||
|
alist = [] |
||||||
|
for k in pt[0]: |
||||||
|
alist.append(k) |
||||||
|
for k in pt[1]: |
||||||
|
alist.append(k) |
||||||
|
ppt = np.array(alist) |
||||||
|
cv.fillPoly(image, [ppt], color, lineType) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
if cv.waitKey(DELAY) >= 0: |
||||||
|
return |
||||||
|
|
||||||
|
# Drawing Circles |
||||||
|
def circles(): |
||||||
|
for i in range(NUMBER): |
||||||
|
center = [] |
||||||
|
center.append(np.random.randint(x1, x2)) |
||||||
|
center.append(np.random.randint(x1, x2)) |
||||||
|
color = "%06x" % np.random.randint(0, 0xFFFFFF) |
||||||
|
color = tuple(int(color[i:i+2], 16) for i in (0, 2 ,4)) |
||||||
|
cv.circle(image, tuple(center), np.random.randint(0, 300), color, np.random.randint(-1, 9), lineType) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
if cv.waitKey(DELAY) >= 0: |
||||||
|
return |
||||||
|
|
||||||
|
# Draws a text string |
||||||
|
def string(): |
||||||
|
for i in range(NUMBER): |
||||||
|
org = [] |
||||||
|
org.append(np.random.randint(x1, x2)) |
||||||
|
org.append(np.random.randint(x1, x2)) |
||||||
|
color = "%06x" % np.random.randint(0, 0xFFFFFF) |
||||||
|
color = tuple(int(color[i:i+2], 16) for i in (0, 2 ,4)) |
||||||
|
cv.putText(image, "Testing text rendering", tuple(org), np.random.randint(0, 8), np.random.randint(0, 100)*0.05+0.1, color, np.random.randint(1, 10), lineType) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
if cv.waitKey(DELAY) >= 0: |
||||||
|
return |
||||||
|
|
||||||
|
|
||||||
|
def string1(): |
||||||
|
textsize = cv.getTextSize("OpenCV forever!", cv.FONT_HERSHEY_COMPLEX, 3, 5) |
||||||
|
org = (int((width - textsize[0][0])/2), int((height - textsize[0][1])/2)) |
||||||
|
for i in range(0, 255, 2): |
||||||
|
image2 = np.array(image) - i |
||||||
|
cv.putText(image2, "OpenCV forever!", org, cv.FONT_HERSHEY_COMPLEX, 3, (i, i, 255), 5, lineType) |
||||||
|
cv.imshow(wndname, image2) |
||||||
|
if cv.waitKey(DELAY) >= 0: |
||||||
|
return |
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
print(__doc__) |
||||||
|
wndname = "Drawing Demo" |
||||||
|
NUMBER = 100 |
||||||
|
DELAY = 5 |
||||||
|
width, height = 1000, 700 |
||||||
|
lineType = cv.LINE_AA # change it to LINE_8 to see non-antialiased graphics |
||||||
|
x1, x2, y1, y2 = -width/2, width*3/2, -height/2, height*3/2 |
||||||
|
image = np.zeros((height, width, 3), dtype = np.uint8) |
||||||
|
cv.imshow(wndname, image) |
||||||
|
cv.waitKey(DELAY) |
||||||
|
lines() |
||||||
|
rectangle() |
||||||
|
ellipse() |
||||||
|
polygonal() |
||||||
|
fill() |
||||||
|
circles() |
||||||
|
string() |
||||||
|
string1() |
||||||
|
cv.waitKey(0) |
||||||
|
cv.destroyAllWindows() |
@ -0,0 +1,69 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
|
||||||
|
''' |
||||||
|
This program demonstrates Laplace point/edge detection using |
||||||
|
OpenCV function Laplacian() |
||||||
|
It captures from the camera of your choice: 0, 1, ... default 0 |
||||||
|
Usage: |
||||||
|
python laplace.py <ddepth> <smoothType> <sigma> |
||||||
|
If no arguments given default arguments will be used. |
||||||
|
|
||||||
|
Keyboard Shortcuts: |
||||||
|
Press space bar to exit the program. |
||||||
|
''' |
||||||
|
|
||||||
|
# Python 2/3 compatibility |
||||||
|
from __future__ import print_function |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import cv2 as cv |
||||||
|
import sys |
||||||
|
|
||||||
|
def main(): |
||||||
|
# Declare the variables we are going to use |
||||||
|
ddepth = cv.CV_16S |
||||||
|
smoothType = "MedianBlur" |
||||||
|
sigma = 3 |
||||||
|
if len(sys.argv)==4: |
||||||
|
ddepth = sys.argv[1] |
||||||
|
smoothType = sys.argv[2] |
||||||
|
sigma = sys.argv[3] |
||||||
|
# Taking input from the camera |
||||||
|
cap=cv.VideoCapture(0) |
||||||
|
# Create Window and Trackbar |
||||||
|
cv.namedWindow("Laplace of Image", cv.WINDOW_AUTOSIZE) |
||||||
|
cv.createTrackbar("Kernel Size Bar", "Laplace of Image", sigma, 15, lambda x:x) |
||||||
|
# Printing frame width, height and FPS |
||||||
|
print("=="*40) |
||||||
|
print("Frame Width: ", cap.get(cv.CAP_PROP_FRAME_WIDTH), "Frame Height: ", cap.get(cv.CAP_PROP_FRAME_HEIGHT), "FPS: ", cap.get(cv.CAP_PROP_FPS)) |
||||||
|
while True: |
||||||
|
# Reading input from the camera |
||||||
|
ret, frame = cap.read() |
||||||
|
if ret == False: |
||||||
|
print("Can't open camera/video stream") |
||||||
|
break |
||||||
|
# Taking input/position from the trackbar |
||||||
|
sigma = cv.getTrackbarPos("Kernel Size Bar", "Laplace of Image") |
||||||
|
# Setting kernel size |
||||||
|
ksize = (sigma*5)|1 |
||||||
|
# Removing noise by blurring with a filter |
||||||
|
if smoothType == "GAUSSIAN": |
||||||
|
smoothed = cv.GaussianBlur(frame, (ksize, ksize), sigma, sigma) |
||||||
|
if smoothType == "BLUR": |
||||||
|
smoothed = cv.blur(frame, (ksize, ksize)) |
||||||
|
if smoothType == "MedianBlur": |
||||||
|
smoothed = cv.medianBlur(frame, ksize) |
||||||
|
|
||||||
|
# Apply Laplace function |
||||||
|
laplace = cv.Laplacian(smoothed, ddepth, 5) |
||||||
|
# Converting back to uint8 |
||||||
|
result = cv.convertScaleAbs(laplace, (sigma+1)*0.25) |
||||||
|
# Display Output |
||||||
|
cv.imshow("Laplace of Image", result) |
||||||
|
k = cv.waitKey(30) |
||||||
|
if k == 27: |
||||||
|
return |
||||||
|
if __name__ == "__main__": |
||||||
|
print(__doc__) |
||||||
|
main() |
||||||
|
cv.destroyAllWindows() |
Loading…
Reference in new issue