|
|
|
@ -87,3 +87,34 @@ void CV_SVMTrainAutoTest::run( int /*start_from*/ ) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TEST(ML_SVM, trainAuto_regression_5369) |
|
|
|
|
{ |
|
|
|
|
int datasize = 100; |
|
|
|
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 ); |
|
|
|
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S ); |
|
|
|
|
|
|
|
|
|
RNG rng(0); // fixed!
|
|
|
|
|
for (int i = 0; i < datasize; ++i) |
|
|
|
|
{ |
|
|
|
|
int response = rng.uniform(0, 2); // Random from {0, 1}.
|
|
|
|
|
samples.at<float>( i, 0 ) = 0; |
|
|
|
|
samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response; |
|
|
|
|
responses.at<int>( i, 0 ) = response; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
|
|
|
|
cv::Ptr<SVM> svm = SVM::create(); |
|
|
|
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
|
|
|
|
|
|
|
|
|
float test_data0[2] = {0.25f, 0.25f}; |
|
|
|
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 ); |
|
|
|
|
float result0 = svm->predict( test_point0 ); |
|
|
|
|
float test_data1[2] = {0.75f, 0.75f}; |
|
|
|
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 ); |
|
|
|
|
float result1 = svm->predict( test_point1 ); |
|
|
|
|
|
|
|
|
|
EXPECT_EQ(0., result0); |
|
|
|
|
EXPECT_EQ(1., result1); |
|
|
|
|
} |
|
|
|
|