mirror of https://github.com/opencv/opencv.git
commit
df4b67a749
15 changed files with 732 additions and 45 deletions
@ -0,0 +1,438 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iomanip> |
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace ocl; |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
////////////////////////////////////OpenCL kernel strings//////////////////////////
|
||||
extern const char *kmeans_kernel; |
||||
} |
||||
} |
||||
|
||||
static void generateRandomCenter(const vector<Vec2f>& box, float* center, RNG& rng) |
||||
{ |
||||
size_t j, dims = box.size(); |
||||
float margin = 1.f/dims; |
||||
for( j = 0; j < dims; j++ ) |
||||
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0]; |
||||
} |
||||
|
||||
// This class is copied from matrix.cpp in core module.
|
||||
class KMeansPPDistanceComputer : public ParallelLoopBody |
||||
{ |
||||
public: |
||||
KMeansPPDistanceComputer( float *_tdist2, |
||||
const float *_data, |
||||
const float *_dist, |
||||
int _dims, |
||||
size_t _step, |
||||
size_t _stepci ) |
||||
: tdist2(_tdist2), |
||||
data(_data), |
||||
dist(_dist), |
||||
dims(_dims), |
||||
step(_step), |
||||
stepci(_stepci) { } |
||||
|
||||
void operator()( const cv::Range& range ) const |
||||
{ |
||||
const int begin = range.start; |
||||
const int end = range.end; |
||||
|
||||
for ( int i = begin; i<end; i++ ) |
||||
{ |
||||
tdist2[i] = std::min(normL2Sqr_(data + step*i, data + stepci, dims), dist[i]); |
||||
} |
||||
} |
||||
|
||||
private: |
||||
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC
|
||||
|
||||
float *tdist2; |
||||
const float *data; |
||||
const float *dist; |
||||
const int dims; |
||||
const size_t step; |
||||
const size_t stepci; |
||||
}; |
||||
/*
|
||||
k-means center initialization using the following algorithm: |
||||
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding |
||||
*/ |
||||
static void generateCentersPP(const Mat& _data, Mat& _out_centers, |
||||
int K, RNG& rng, int trials) |
||||
{ |
||||
int i, j, k, dims = _data.cols, N = _data.rows; |
||||
const float* data = (float*)_data.data; |
||||
size_t step = _data.step/sizeof(data[0]); |
||||
vector<int> _centers(K); |
||||
int* centers = &_centers[0]; |
||||
vector<float> _dist(N*3); |
||||
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N; |
||||
double sum0 = 0; |
||||
|
||||
centers[0] = (unsigned)rng % N; |
||||
|
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
dist[i] = normL2Sqr_(data + step*i, data + step*centers[0], dims); |
||||
sum0 += dist[i]; |
||||
} |
||||
|
||||
for( k = 1; k < K; k++ ) |
||||
{ |
||||
double bestSum = DBL_MAX; |
||||
int bestCenter = -1; |
||||
|
||||
for( j = 0; j < trials; j++ ) |
||||
{ |
||||
double p = (double)rng*sum0, s = 0; |
||||
for( i = 0; i < N-1; i++ ) |
||||
if( (p -= dist[i]) <= 0 ) |
||||
break; |
||||
int ci = i; |
||||
|
||||
parallel_for_(Range(0, N), |
||||
KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci)); |
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
s += tdist2[i]; |
||||
} |
||||
|
||||
if( s < bestSum ) |
||||
{ |
||||
bestSum = s; |
||||
bestCenter = ci; |
||||
std::swap(tdist, tdist2); |
||||
} |
||||
} |
||||
centers[k] = bestCenter; |
||||
sum0 = bestSum; |
||||
std::swap(dist, tdist); |
||||
} |
||||
|
||||
for( k = 0; k < K; k++ ) |
||||
{ |
||||
const float* src = data + step*centers[k]; |
||||
float* dst = _out_centers.ptr<float>(k); |
||||
for( j = 0; j < dims; j++ ) |
||||
dst[j] = src[j]; |
||||
} |
||||
} |
||||
|
||||
void cv::ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat ¢ers) |
||||
{ |
||||
//if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F)
|
||||
//{
|
||||
// CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
|
||||
// return;
|
||||
//}
|
||||
|
||||
Context *clCxt = src.clCxt; |
||||
int labels_step = (int)(labels.step/labels.elemSize()); |
||||
string kernelname = "distanceToCenters"; |
||||
int threadNum = src.rows > 256 ? 256 : src.rows; |
||||
size_t localThreads[3] = {1, threadNum, 1}; |
||||
size_t globalThreads[3] = {1, src.rows, 1}; |
||||
|
||||
vector<pair<size_t, const void *> > args; |
||||
args.push_back(make_pair(sizeof(cl_int), (void *)&labels_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void *)¢ers.rows)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void *)&src.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void *)&labels.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void *)¢ers.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void *)&src.rows)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void *)¢ers.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dists.data)); |
||||
|
||||
openCLExecuteKernel(clCxt, &kmeans_kernel, kernelname, globalThreads, localThreads, args, -1, -1, NULL); |
||||
} |
||||
///////////////////////////////////k - means /////////////////////////////////////////////////////////
|
||||
double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels, |
||||
TermCriteria criteria, int attempts, int flags, oclMat &_centers) |
||||
{ |
||||
const int SPP_TRIALS = 3; |
||||
bool isrow = _src.rows == 1 && _src.oclchannels() > 1; |
||||
int N = !isrow ? _src.rows : _src.cols; |
||||
int dims = (!isrow ? _src.cols : 1) * _src.oclchannels(); |
||||
int type = _src.depth(); |
||||
|
||||
attempts = std::max(attempts, 1); |
||||
CV_Assert(type == CV_32F && K > 0 ); |
||||
CV_Assert( N >= K ); |
||||
|
||||
Mat _labels; |
||||
if( flags & CV_KMEANS_USE_INITIAL_LABELS ) |
||||
{ |
||||
CV_Assert( (_bestLabels.cols == 1 || _bestLabels.rows == 1) && |
||||
_bestLabels.cols * _bestLabels.rows == N && |
||||
_bestLabels.type() == CV_32S ); |
||||
_bestLabels.download(_labels); |
||||
} |
||||
else |
||||
{ |
||||
if( !((_bestLabels.cols == 1 || _bestLabels.rows == 1) && |
||||
_bestLabels.cols * _bestLabels.rows == N && |
||||
_bestLabels.type() == CV_32S && |
||||
_bestLabels.isContinuous())) |
||||
_bestLabels.create(N, 1, CV_32S); |
||||
_labels.create(_bestLabels.size(), _bestLabels.type()); |
||||
} |
||||
int* labels = _labels.ptr<int>(); |
||||
|
||||
Mat data; |
||||
_src.download(data); |
||||
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type); |
||||
vector<int> counters(K); |
||||
vector<Vec2f> _box(dims); |
||||
Vec2f* box = &_box[0]; |
||||
double best_compactness = DBL_MAX, compactness = 0; |
||||
RNG& rng = theRNG(); |
||||
int a, iter, i, j, k; |
||||
|
||||
if( criteria.type & TermCriteria::EPS ) |
||||
criteria.epsilon = std::max(criteria.epsilon, 0.); |
||||
else |
||||
criteria.epsilon = FLT_EPSILON; |
||||
criteria.epsilon *= criteria.epsilon; |
||||
|
||||
if( criteria.type & TermCriteria::COUNT ) |
||||
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100); |
||||
else |
||||
criteria.maxCount = 100; |
||||
|
||||
if( K == 1 ) |
||||
{ |
||||
attempts = 1; |
||||
criteria.maxCount = 2; |
||||
} |
||||
|
||||
const float* sample = data.ptr<float>(); |
||||
for( j = 0; j < dims; j++ ) |
||||
box[j] = Vec2f(sample[j], sample[j]); |
||||
|
||||
for( i = 1; i < N; i++ ) |
||||
{ |
||||
sample = data.ptr<float>(i); |
||||
for( j = 0; j < dims; j++ ) |
||||
{ |
||||
float v = sample[j]; |
||||
box[j][0] = std::min(box[j][0], v); |
||||
box[j][1] = std::max(box[j][1], v); |
||||
} |
||||
} |
||||
|
||||
for( a = 0; a < attempts; a++ ) |
||||
{ |
||||
double max_center_shift = DBL_MAX; |
||||
for( iter = 0;; ) |
||||
{ |
||||
swap(centers, old_centers); |
||||
|
||||
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) ) |
||||
{ |
||||
if( flags & KMEANS_PP_CENTERS ) |
||||
generateCentersPP(data, centers, K, rng, SPP_TRIALS); |
||||
else |
||||
{ |
||||
for( k = 0; k < K; k++ ) |
||||
generateRandomCenter(_box, centers.ptr<float>(k), rng); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) ) |
||||
{ |
||||
for( i = 0; i < N; i++ ) |
||||
CV_Assert( (unsigned)labels[i] < (unsigned)K ); |
||||
} |
||||
|
||||
// compute centers
|
||||
centers = Scalar(0); |
||||
for( k = 0; k < K; k++ ) |
||||
counters[k] = 0; |
||||
|
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
sample = data.ptr<float>(i); |
||||
k = labels[i]; |
||||
float* center = centers.ptr<float>(k); |
||||
j=0; |
||||
#if CV_ENABLE_UNROLLED |
||||
for(; j <= dims - 4; j += 4 ) |
||||
{ |
||||
float t0 = center[j] + sample[j]; |
||||
float t1 = center[j+1] + sample[j+1]; |
||||
|
||||
center[j] = t0; |
||||
center[j+1] = t1; |
||||
|
||||
t0 = center[j+2] + sample[j+2]; |
||||
t1 = center[j+3] + sample[j+3]; |
||||
|
||||
center[j+2] = t0; |
||||
center[j+3] = t1; |
||||
} |
||||
#endif |
||||
for( ; j < dims; j++ ) |
||||
center[j] += sample[j]; |
||||
counters[k]++; |
||||
} |
||||
|
||||
if( iter > 0 ) |
||||
max_center_shift = 0; |
||||
|
||||
for( k = 0; k < K; k++ ) |
||||
{ |
||||
if( counters[k] != 0 ) |
||||
continue; |
||||
|
||||
// if some cluster appeared to be empty then:
|
||||
// 1. find the biggest cluster
|
||||
// 2. find the farthest from the center point in the biggest cluster
|
||||
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
|
||||
int max_k = 0; |
||||
for( int k1 = 1; k1 < K; k1++ ) |
||||
{ |
||||
if( counters[max_k] < counters[k1] ) |
||||
max_k = k1; |
||||
} |
||||
|
||||
double max_dist = 0; |
||||
int farthest_i = -1; |
||||
float* new_center = centers.ptr<float>(k); |
||||
float* old_center = centers.ptr<float>(max_k); |
||||
float* _old_center = temp.ptr<float>(); // normalized
|
||||
float scale = 1.f/counters[max_k]; |
||||
for( j = 0; j < dims; j++ ) |
||||
_old_center[j] = old_center[j]*scale; |
||||
|
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
if( labels[i] != max_k ) |
||||
continue; |
||||
sample = data.ptr<float>(i); |
||||
double dist = normL2Sqr_(sample, _old_center, dims); |
||||
|
||||
if( max_dist <= dist ) |
||||
{ |
||||
max_dist = dist; |
||||
farthest_i = i; |
||||
} |
||||
} |
||||
|
||||
counters[max_k]--; |
||||
counters[k]++; |
||||
labels[farthest_i] = k; |
||||
sample = data.ptr<float>(farthest_i); |
||||
|
||||
for( j = 0; j < dims; j++ ) |
||||
{ |
||||
old_center[j] -= sample[j]; |
||||
new_center[j] += sample[j]; |
||||
} |
||||
} |
||||
|
||||
for( k = 0; k < K; k++ ) |
||||
{ |
||||
float* center = centers.ptr<float>(k); |
||||
CV_Assert( counters[k] != 0 ); |
||||
|
||||
float scale = 1.f/counters[k]; |
||||
for( j = 0; j < dims; j++ ) |
||||
center[j] *= scale; |
||||
|
||||
if( iter > 0 ) |
||||
{ |
||||
double dist = 0; |
||||
const float* old_center = old_centers.ptr<float>(k); |
||||
for( j = 0; j < dims; j++ ) |
||||
{ |
||||
double t = center[j] - old_center[j]; |
||||
dist += t*t; |
||||
} |
||||
max_center_shift = std::max(max_center_shift, dist); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon ) |
||||
break; |
||||
|
||||
// assign labels
|
||||
oclMat _dists(1, N, CV_64F); |
||||
|
||||
_bestLabels.upload(_labels); |
||||
_centers.upload(centers); |
||||
distanceToCenters(_dists, _bestLabels, _src, _centers); |
||||
|
||||
Mat dists; |
||||
_dists.download(dists); |
||||
_bestLabels.download(_labels); |
||||
|
||||
double* dist = dists.ptr<double>(0); |
||||
compactness = 0; |
||||
for( i = 0; i < N; i++ ) |
||||
{ |
||||
compactness += dist[i]; |
||||
} |
||||
} |
||||
|
||||
if( compactness < best_compactness ) |
||||
{ |
||||
best_compactness = compactness; |
||||
} |
||||
} |
||||
|
||||
return best_compactness; |
||||
} |
||||
|
@ -0,0 +1,84 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// @Authors |
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other GpuMaterials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors as is and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
__kernel void distanceToCenters( |
||||
int label_step, int K, |
||||
__global float *src, |
||||
__global int *labels, int dims, int rows, |
||||
__global float *centers, |
||||
__global float *dists) |
||||
{ |
||||
int gid = get_global_id(1); |
||||
|
||||
float dist, euDist, min; |
||||
int minCentroid; |
||||
|
||||
if(gid >= rows) |
||||
return; |
||||
|
||||
for(int i = 0 ; i < K; i++) |
||||
{ |
||||
euDist = 0; |
||||
for(int j = 0; j < dims; j++) |
||||
{ |
||||
dist = (src[j + gid * dims] |
||||
- centers[j + i * dims]); |
||||
euDist += dist * dist; |
||||
} |
||||
|
||||
if(i == 0) |
||||
{ |
||||
min = euDist; |
||||
minCentroid = 0; |
||||
} |
||||
else if(euDist < min) |
||||
{ |
||||
min = euDist; |
||||
minCentroid = i; |
||||
} |
||||
} |
||||
dists[gid] = min; |
||||
labels[label_step * gid] = minCentroid; |
||||
} |
@ -0,0 +1,162 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Erping Pang, pang_er_ping@163.com
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
|
||||
using namespace cvtest; |
||||
using namespace testing; |
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
#define OCL_KMEANS_USE_INITIAL_LABELS 1 |
||||
#define OCL_KMEANS_PP_CENTERS 2 |
||||
|
||||
PARAM_TEST_CASE(Kmeans, int, int, int) |
||||
{ |
||||
int type; |
||||
int K; |
||||
int flags; |
||||
cv::Mat src ; |
||||
ocl::oclMat d_src, d_dists; |
||||
|
||||
Mat labels, centers; |
||||
ocl::oclMat d_labels, d_centers; |
||||
cv::RNG rng ; |
||||
virtual void SetUp(){ |
||||
K = GET_PARAM(0); |
||||
type = GET_PARAM(1); |
||||
flags = GET_PARAM(2); |
||||
rng = TS::ptr()->get_rng(); |
||||
|
||||
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
|
||||
cv::Size size = cv::Size(MWIDTH, MHEIGHT); |
||||
src.create(size, type); |
||||
int row_idx = 0; |
||||
const int max_neighbour = MHEIGHT / K - 1; |
||||
CV_Assert(K <= MWIDTH); |
||||
for(int i = 0; i < K; i++ ) |
||||
{ |
||||
Mat center_row_header = src.row(row_idx); |
||||
center_row_header.setTo(0); |
||||
int nchannel = center_row_header.channels(); |
||||
for(int j = 0; j < nchannel; j++) |
||||
center_row_header.at<float>(0, i*nchannel+j) = 50000.0; |
||||
|
||||
for(int j = 0; (j < max_neighbour) ||
|
||||
(i == K-1 && j < max_neighbour + MHEIGHT%K); j ++) |
||||
{ |
||||
Mat cur_row_header = src.row(row_idx + 1 + j); |
||||
center_row_header.copyTo(cur_row_header); |
||||
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), -200, 200, false); |
||||
cur_row_header += tmpmat; |
||||
} |
||||
row_idx += 1 + max_neighbour; |
||||
} |
||||
} |
||||
}; |
||||
TEST_P(Kmeans, Mat){ |
||||
|
||||
if(flags & KMEANS_USE_INITIAL_LABELS) |
||||
{ |
||||
// inital a given labels
|
||||
labels.create(src.rows, 1, CV_32S); |
||||
int *label = labels.ptr<int>(); |
||||
for(int i = 0; i < src.rows; i++) |
||||
label[i] = rng.uniform(0, K); |
||||
d_labels.upload(labels); |
||||
} |
||||
d_src.upload(src); |
||||
|
||||
for(int j = 0; j < LOOP_TIMES; j++) |
||||
{ |
||||
kmeans(src, K, labels, |
||||
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0), |
||||
1, flags, centers); |
||||
|
||||
ocl::kmeans(d_src, K, d_labels, |
||||
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0), |
||||
1, flags, d_centers); |
||||
|
||||
Mat dd_labels(d_labels); |
||||
Mat dd_centers(d_centers); |
||||
if(flags & KMEANS_USE_INITIAL_LABELS) |
||||
{ |
||||
EXPECT_MAT_NEAR(labels, dd_labels, 0); |
||||
EXPECT_MAT_NEAR(centers, dd_centers, 1e-3); |
||||
}
|
||||
else
|
||||
{ |
||||
int row_idx = 0; |
||||
for(int i = 0; i < K; i++) |
||||
{ |
||||
// verify lables with ground truth resutls
|
||||
int label = labels.at<int>(row_idx); |
||||
int header_label = dd_labels.at<int>(row_idx); |
||||
for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++) |
||||
{ |
||||
ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0); |
||||
ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0); |
||||
} |
||||
|
||||
// verify centers
|
||||
float *center = centers.ptr<float>(label); |
||||
float *header_center = dd_centers.ptr<float>(header_label); |
||||
for(int t = 0; t < centers.cols; t++) |
||||
ASSERT_NEAR(center[t], header_center[t], 1e-3); |
||||
|
||||
row_idx += MHEIGHT/K; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine( |
||||
Values(3, 5, 8), |
||||
Values(CV_32FC1, CV_32FC2, CV_32FC4), |
||||
Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));
|
||||
|
||||
#endif |
Loading…
Reference in new issue