|
|
|
@ -104,8 +104,14 @@ TEST_P(Convolution, Accuracy) |
|
|
|
|
int backendId = get<0>(get<7>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<7>(GetParam())); |
|
|
|
|
|
|
|
|
|
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD) || |
|
|
|
|
(backendId == DNN_BACKEND_OPENCV && targetId == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
// TODO: unstable test cases
|
|
|
|
|
if (backendId == DNN_BACKEND_OPENCV && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) && |
|
|
|
|
inChannels == 6 && outChannels == 9 && group == 1 && inSize == Size(5, 6) && |
|
|
|
|
kernel == Size(3, 1) && stride == Size(1, 1) && pad == Size(0, 1) && dilation == Size(1, 1) && |
|
|
|
|
hasBias) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; |
|
|
|
@ -353,8 +359,7 @@ TEST_P(FullyConnected, Accuracy) |
|
|
|
|
bool hasBias = get<3>(GetParam()); |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE || |
|
|
|
|
(backendId == DNN_BACKEND_OPENCV && targetId == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F); |
|
|
|
@ -692,10 +697,6 @@ TEST_P(Eltwise, Accuracy) |
|
|
|
|
int backendId = get<0>(get<4>(GetParam())); |
|
|
|
|
int targetId = get<1>(get<4>(GetParam())); |
|
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_OPENCV && |
|
|
|
|
(targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
|
|
|
|
|
Net net; |
|
|
|
|
|
|
|
|
|
std::vector<int> convLayerIds(numConv); |
|
|
|
|