diff --git a/modules/ocl/test/test_arithm.cpp b/modules/ocl/test/test_arithm.cpp index db01d95036..59de88075f 100644 --- a/modules/ocl/test/test_arithm.cpp +++ b/modules/ocl/test/test_arithm.cpp @@ -80,12 +80,14 @@ PARAM_TEST_CASE(Lut, int, int, bool, bool) cv::Mat dst_roi; // ocl dst mat for testing + cv::ocl::oclMat gsrc_whole; + cv::ocl::oclMat glut_whole; cv::ocl::oclMat gdst_whole; // ocl mat with roi - cv::ocl::oclMat gsrc; - cv::ocl::oclMat glut; - cv::ocl::oclMat gdst; + cv::ocl::oclMat gsrc_roi; + cv::ocl::oclMat glut_roi; + cv::ocl::oclMat gdst_roi; virtual void SetUp() { @@ -93,66 +95,34 @@ PARAM_TEST_CASE(Lut, int, int, bool, bool) cn = GET_PARAM(1); same_cn = GET_PARAM(2); use_roi = GET_PARAM(3); - - const int src_type = CV_MAKE_TYPE(CV_8U, cn); - const int lut_type = CV_MAKE_TYPE(lut_depth, same_cn ? cn : 1); - const int dst_type = CV_MAKE_TYPE(lut_depth, cn); - - cv::RNG &rng = TS::ptr()->get_rng(); - - src = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), src_type, 0, 256, false); - lut = randomMat(rng, use_roi ? randomSize(260, 300) : Size(256, 1), lut_type, 5, 16, false); - dst = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), dst_type, 5, 16, false); } void random_roi() { - // set up roi - int roicols, roirows; - int srcx, srcy; - int lutx, luty; - int dstx, dsty; - - if (use_roi) - { - // randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); - - roicols = rng.uniform(1, MIN_VALUE); - roirows = rng.uniform(1, MIN_VALUE); - - srcx = rng.uniform(0, src.cols - roicols); - srcy = rng.uniform(0, src.rows - roirows); - lutx = rng.uniform(0, lut.cols - 256); - luty = rng.uniform(0, lut.rows - 1); + const int src_type = CV_MAKE_TYPE(CV_8U, cn); + const int lut_type = CV_MAKE_TYPE(lut_depth, same_cn ? cn : 1); + const int dst_type = CV_MAKE_TYPE(lut_depth, cn); - dstx = rng.uniform(0, dst.cols - roicols); - dsty = rng.uniform(0, dst.rows - roirows); - } - else - { - roicols = src.cols; - roirows = src.rows; - srcx = srcy = 0; - lutx = luty = 0; - dstx = dsty = 0; - } + Size roiSize = randomSize(1, MAX_VALUE); + Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(src, src_roi, roiSize, srcBorder, src_type, 0, 256); - src_roi = src(Rect(srcx, srcy, roicols, roirows)); - lut_roi = lut(Rect(lutx, luty, 256, 1)); - dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); + Size lutRoiSize = Size(256, 1); + Border lutBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(lut, lut_roi, lutRoiSize, lutBorder, lut_type, 5, 16); - gdst_whole = dst; - gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); + Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(dst, dst_roi, roiSize, dstBorder, dst_type, 5, 16); - gsrc = src_roi; - glut = lut_roi; + generateOclMat(gsrc_whole, gsrc_roi, src, roiSize, srcBorder); + generateOclMat(glut_whole, glut_roi, lut, lutRoiSize, lutBorder); + generateOclMat(gdst_whole, gdst_roi, dst, roiSize, dstBorder); } void Near(double threshold = 0.) { EXPECT_MAT_NEAR(dst, Mat(gdst_whole), threshold); - EXPECT_MAT_NEAR(dst_roi, Mat(gdst), threshold); + EXPECT_MAT_NEAR(dst_roi, Mat(gdst_roi), threshold); } }; @@ -163,7 +133,7 @@ TEST_P(Lut, Mat) random_roi(); cv::LUT(src_roi, lut_roi, dst_roi); - cv::ocl::LUT(gsrc, glut, gdst); + cv::ocl::LUT(gsrc_roi, glut_roi, gdst_roi); Near(); } @@ -183,50 +153,34 @@ PARAM_TEST_CASE(ArithmTestBase, int, int, bool) cv::Mat src2; cv::Mat mask; cv::Mat dst1; - cv::Mat dst2; // for two outputs - - // set up roi - int roicols, roirows; - int src1x, src1y; - int src2x, src2y; - int dst1x, dst1y; - int dst2x, dst2y; - int maskx, masky; + cv::Mat dst2; // src mat with roi cv::Mat src1_roi; cv::Mat src2_roi; cv::Mat mask_roi; cv::Mat dst1_roi; - cv::Mat dst2_roi; // for two outputs + cv::Mat dst2_roi; // ocl dst mat for testing + cv::ocl::oclMat gsrc1_whole; + cv::ocl::oclMat gsrc2_whole; cv::ocl::oclMat gdst1_whole; - cv::ocl::oclMat gdst2_whole; // for two outputs + cv::ocl::oclMat gdst2_whole; + cv::ocl::oclMat gmask_whole; // ocl mat with roi - cv::ocl::oclMat gsrc1; - cv::ocl::oclMat gsrc2; - cv::ocl::oclMat gdst1; - cv::ocl::oclMat gdst2; // for two outputs - cv::ocl::oclMat gmask; + cv::ocl::oclMat gsrc1_roi; + cv::ocl::oclMat gsrc2_roi; + cv::ocl::oclMat gdst1_roi; + cv::ocl::oclMat gdst2_roi; + cv::ocl::oclMat gmask_roi; virtual void SetUp() { depth = GET_PARAM(0); cn = GET_PARAM(1); use_roi = GET_PARAM(2); - const int type = CV_MAKE_TYPE(depth, cn); - - cv::RNG &rng = TS::ptr()->get_rng(); - - src1 = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), type, 2, 11, false); - src2 = randomMat(rng, !use_roi ? src1.size() : randomSize(MIN_VALUE, MAX_VALUE), type, -1540, 1740, false); - dst1 = randomMat(rng, !use_roi ? src1.size() : randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); - dst2 = randomMat(rng, !use_roi ? src1.size() : randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); - mask = randomMat(rng, !use_roi ? src1.size() : randomSize(MIN_VALUE, MAX_VALUE), CV_8UC1, 0, 2, false); - - cv::threshold(mask, mask, 0.5, 255., CV_8UC1); val = cv::Scalar(rng.uniform(-100.0, 100.0), rng.uniform(-100.0, 100.0), rng.uniform(-100.0, 100.0), rng.uniform(-100.0, 100.0)); @@ -234,65 +188,43 @@ PARAM_TEST_CASE(ArithmTestBase, int, int, bool) void random_roi() { - if (use_roi) - { - // randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); - - roicols = rng.uniform(1, MIN_VALUE); - roirows = rng.uniform(1, MIN_VALUE); + const int type = CV_MAKE_TYPE(depth, cn); - src1x = rng.uniform(0, src1.cols - roicols); - src1y = rng.uniform(0, src1.rows - roirows); - src2x = rng.uniform(0, src2.cols - roicols); - src2y = rng.uniform(0, src2.rows - roirows); + Size roiSize = randomSize(1, MAX_VALUE); + Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(src1, src1_roi, roiSize, srcBorder, type, 2, 11); - dst1x = rng.uniform(0, dst1.cols - roicols); - dst1y = rng.uniform(0, dst1.rows - roirows); - dst2x = rng.uniform(0, dst2.cols - roicols); - dst2y = rng.uniform(0, dst2.rows - roirows); + Border src2Border = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(src2, src2_roi, roiSize, src2Border, type, -1540, 1740); - maskx = rng.uniform(0, mask.cols - roicols); - masky = rng.uniform(0, mask.rows - roirows); - } - else - { - roicols = src1.cols; - roirows = src1.rows; - src1x = src1y = 0; - src2x = src2y = 0; - dst1x = dst1y = 0; - dst2x = dst2y = 0; - maskx = masky = 0; - } + Border dst1Border = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(dst1, dst1_roi, roiSize, dst1Border, type, 5, 16); - src1_roi = src1(Rect(src1x, src1y, roicols, roirows)); - src2_roi = src2(Rect(src2x, src2y, roicols, roirows)); - mask_roi = mask(Rect(maskx, masky, roicols, roirows)); - dst1_roi = dst1(Rect(dst1x, dst1y, roicols, roirows)); - dst2_roi = dst2(Rect(dst2x, dst2y, roicols, roirows)); + Border dst2Border = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(dst2, dst2_roi, roiSize, dst2Border, type, 5, 16); - gdst1_whole = dst1; - gdst1 = gdst1_whole(Rect(dst1x, dst1y, roicols, roirows)); + Border maskBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(mask, mask_roi, roiSize, maskBorder, CV_8UC1, 0, 2); + cv::threshold(mask, mask, 0.5, 255., CV_8UC1); - gdst2_whole = dst2; - gdst2 = gdst2_whole(Rect(dst2x, dst2y, roicols, roirows)); - gsrc1 = src1_roi; - gsrc2 = src2_roi; - gmask = mask_roi; + generateOclMat(gsrc1_whole, gsrc1_roi, src1, roiSize, srcBorder); + generateOclMat(gsrc2_whole, gsrc2_roi, src2, roiSize, src2Border); + generateOclMat(gdst1_whole, gdst1_roi, dst1, roiSize, dst1Border); + generateOclMat(gdst2_whole, gdst2_roi, dst2, roiSize, dst2Border); + generateOclMat(gmask_whole, gmask_roi, mask, roiSize, maskBorder); } void Near(double threshold = 0.) { EXPECT_MAT_NEAR(dst1, Mat(gdst1_whole), threshold); - EXPECT_MAT_NEAR(dst1_roi, Mat(gdst1), threshold); + EXPECT_MAT_NEAR(dst1_roi, Mat(gdst1_roi), threshold); } void Near1(double threshold = 0.) { EXPECT_MAT_NEAR(dst2, Mat(gdst2_whole), threshold); - EXPECT_MAT_NEAR(dst2_roi, Mat(gdst2), threshold); + EXPECT_MAT_NEAR(dst2_roi, Mat(gdst2_roi), threshold); } }; @@ -307,7 +239,7 @@ TEST_P(Exp, Mat) random_roi(); cv::exp(src1_roi, dst1_roi); - cv::ocl::exp(gsrc1, gdst1); + cv::ocl::exp(gsrc1_roi, gdst1_roi); Near(2); } @@ -324,7 +256,7 @@ TEST_P(Log, Mat) random_roi(); cv::log(src1_roi, dst1_roi); - cv::ocl::log(gsrc1, gdst1); + cv::ocl::log(gsrc1_roi, gdst1_roi); Near(1); } } @@ -340,7 +272,7 @@ TEST_P(Add, Mat) random_roi(); cv::add(src1_roi, src2_roi, dst1_roi); - cv::ocl::add(gsrc1, gsrc2, gdst1); + cv::ocl::add(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(0); } } @@ -352,7 +284,7 @@ TEST_P(Add, Mat_Mask) random_roi(); cv::add(src1_roi, src2_roi, dst1_roi, mask_roi); - cv::ocl::add(gsrc1, gsrc2, gdst1, gmask); + cv::ocl::add(gsrc1_roi, gsrc2_roi, gdst1_roi, gmask_roi); Near(0); } } @@ -364,7 +296,7 @@ TEST_P(Add, Scalar) random_roi(); cv::add(src1_roi, val, dst1_roi); - cv::ocl::add(gsrc1, val, gdst1); + cv::ocl::add(gsrc1_roi, val, gdst1_roi); Near(1e-5); } } @@ -376,7 +308,7 @@ TEST_P(Add, Scalar_Mask) random_roi(); cv::add(src1_roi, val, dst1_roi, mask_roi); - cv::ocl::add(gsrc1, val, gdst1, gmask); + cv::ocl::add(gsrc1_roi, val, gdst1_roi, gmask_roi); Near(1e-5); } } @@ -392,7 +324,7 @@ TEST_P(Sub, Mat) random_roi(); cv::subtract(src1_roi, src2_roi, dst1_roi); - cv::ocl::subtract(gsrc1, gsrc2, gdst1); + cv::ocl::subtract(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(0); } @@ -405,7 +337,7 @@ TEST_P(Sub, Mat_Mask) random_roi(); cv::subtract(src1_roi, src2_roi, dst1_roi, mask_roi); - cv::ocl::subtract(gsrc1, gsrc2, gdst1, gmask); + cv::ocl::subtract(gsrc1_roi, gsrc2_roi, gdst1_roi, gmask_roi); Near(0); } } @@ -417,7 +349,7 @@ TEST_P(Sub, Scalar) random_roi(); cv::subtract(src1_roi, val, dst1_roi); - cv::ocl::subtract(gsrc1, val, gdst1); + cv::ocl::subtract(gsrc1_roi, val, gdst1_roi); Near(1e-5); } @@ -430,7 +362,7 @@ TEST_P(Sub, Scalar_Mask) random_roi(); cv::subtract(src1_roi, val, dst1_roi, mask_roi); - cv::ocl::subtract(gsrc1, val, gdst1, gmask); + cv::ocl::subtract(gsrc1_roi, val, gdst1_roi, gmask_roi); Near(1e-5); } } @@ -446,7 +378,7 @@ TEST_P(Mul, Mat) random_roi(); cv::multiply(src1_roi, src2_roi, dst1_roi); - cv::ocl::multiply(gsrc1, gsrc2, gdst1); + cv::ocl::multiply(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(0); } } @@ -458,9 +390,9 @@ TEST_P(Mul, Scalar) random_roi(); cv::multiply(val[0], src1_roi, dst1_roi); - cv::ocl::multiply(val[0], gsrc1, gdst1); + cv::ocl::multiply(val[0], gsrc1_roi, gdst1_roi); - Near(gdst1.depth() >= CV_32F ? 1e-3 : 1); + Near(gdst1_roi.depth() >= CV_32F ? 1e-3 : 1); } } @@ -471,9 +403,9 @@ TEST_P(Mul, Mat_Scalar) random_roi(); cv::multiply(src1_roi, src2_roi, dst1_roi, val[0]); - cv::ocl::multiply(gsrc1, gsrc2, gdst1, val[0]); + cv::ocl::multiply(gsrc1_roi, gsrc2_roi, gdst1_roi, val[0]); - Near(gdst1.depth() >= CV_32F ? 1e-3 : 1); + Near(gdst1_roi.depth() >= CV_32F ? 1e-3 : 1); } } @@ -488,7 +420,7 @@ TEST_P(Div, Mat) random_roi(); cv::divide(src1_roi, src2_roi, dst1_roi); - cv::ocl::divide(gsrc1, gsrc2, gdst1); + cv::ocl::divide(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(1); } } @@ -500,9 +432,9 @@ TEST_P(Div, Scalar) random_roi(); cv::divide(val[0], src1_roi, dst1_roi); - cv::ocl::divide(val[0], gsrc1, gdst1); + cv::ocl::divide(val[0], gsrc1_roi, gdst1_roi); - Near(gdst1.depth() >= CV_32F ? 1e-3 : 1); + Near(gdst1_roi.depth() >= CV_32F ? 1e-3 : 1); } } @@ -513,9 +445,9 @@ TEST_P(Div, Mat_Scalar) random_roi(); cv::divide(src1_roi, src2_roi, dst1_roi, val[0]); - cv::ocl::divide(gsrc1, gsrc2, gdst1, val[0]); + cv::ocl::divide(gsrc1_roi, gsrc2_roi, gdst1_roi, val[0]); - Near(gdst1.depth() >= CV_32F ? 1e-3 : 1); + Near(gdst1_roi.depth() >= CV_32F ? 1e-3 : 1); } } @@ -530,7 +462,7 @@ TEST_P(Absdiff, Mat) random_roi(); cv::absdiff(src1_roi, src2_roi, dst1_roi); - cv::ocl::absdiff(gsrc1, gsrc2, gdst1); + cv::ocl::absdiff(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(0); } } @@ -542,7 +474,7 @@ TEST_P(Absdiff, Mat_Scalar) random_roi(); cv::absdiff(src1_roi, val, dst1_roi); - cv::ocl::absdiff(gsrc1, val, gdst1); + cv::ocl::absdiff(gsrc1_roi, val, gdst1_roi); Near(1e-5); } } @@ -558,7 +490,7 @@ TEST_P(CartToPolar, angleInDegree) random_roi(); cv::cartToPolar(src1_roi, src2_roi, dst1_roi, dst2_roi, true); - cv::ocl::cartToPolar(gsrc1, gsrc2, gdst1, gdst2, true); + cv::ocl::cartToPolar(gsrc1_roi, gsrc2_roi, gdst1_roi, gdst2_roi, true); Near(.5); Near1(.5); } @@ -571,7 +503,7 @@ TEST_P(CartToPolar, angleInRadians) random_roi(); cv::cartToPolar(src1_roi, src2_roi, dst1_roi, dst2_roi); - cv::ocl::cartToPolar(gsrc1, gsrc2, gdst1, gdst2); + cv::ocl::cartToPolar(gsrc1_roi, gsrc2_roi, gdst1_roi, gdst2_roi); Near(.5); Near1(.5); } @@ -588,7 +520,7 @@ TEST_P(PolarToCart, angleInDegree) random_roi(); cv::polarToCart(src1_roi, src2_roi, dst1_roi, dst2_roi, true); - cv::ocl::polarToCart(gsrc1, gsrc2, gdst1, gdst2, true); + cv::ocl::polarToCart(gsrc1_roi, gsrc2_roi, gdst1_roi, gdst2_roi, true); Near(.5); Near1(.5); @@ -602,7 +534,7 @@ TEST_P(PolarToCart, angleInRadians) random_roi(); cv::polarToCart(src1_roi, src2_roi, dst1_roi, dst2_roi); - cv::ocl::polarToCart(gsrc1, gsrc2, gdst1, gdst2); + cv::ocl::polarToCart(gsrc1_roi, gsrc2_roi, gdst1_roi, gdst2_roi); Near(.5); Near1(.5); @@ -620,7 +552,7 @@ TEST_P(Magnitude, Mat) random_roi(); cv::magnitude(src1_roi, src2_roi, dst1_roi); - cv::ocl::magnitude(gsrc1, gsrc2, gdst1); + cv::ocl::magnitude(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(depth == CV_64F ? 1e-5 : 1e-2); } } @@ -636,7 +568,7 @@ TEST_P(Transpose, Mat) random_roi(); cv::transpose(src1_roi, dst1_roi); - cv::ocl::transpose(gsrc1, gdst1); + cv::ocl::transpose(gsrc1_roi, gdst1_roi); Near(1e-5); } @@ -644,35 +576,23 @@ TEST_P(Transpose, Mat) TEST_P(Transpose, SquareInplace) { - cv::RNG &rng = TS::ptr()->get_rng(); - int value = randomInt(MIN_VALUE, MAX_VALUE); - src1 = randomMat(rng, Size(value, value), CV_MAKE_TYPE(depth, cn), 5, 16, false); + const int type = CV_MAKE_TYPE(depth, cn); - if (use_roi) + for (int j = 0; j < LOOP_TIMES; j++) { - roirows = roicols = randomInt(1, src1.cols); + Size roiSize = randomSize(1, MAX_VALUE); + roiSize.height = roiSize.width; // make it square - src1x = randomInt(0, src1.cols - roicols); - src1y = randomInt(0, src1.rows - roirows); - } - else - { - roicols = roirows = src1.cols; - src1x = src1y = 0; - } + Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); + randomSubMat(src1, src1_roi, roiSize, srcBorder, type, 5, 16); - Rect r(src1x, src1y, roicols, roirows); - src1_roi = src1(r); - gdst1_whole = src1; - gdst1 = gdst1_whole(r); + generateOclMat(gsrc1_whole, gsrc1_roi, src1, roiSize, srcBorder); - for (int j = 0; j < LOOP_TIMES; j++) - { cv::transpose(src1_roi, src1_roi); - cv::ocl::transpose(gdst1, gdst1); + cv::ocl::transpose(gsrc1_roi, gsrc1_roi); - EXPECT_MAT_NEAR(src1, Mat(gdst1_whole), 0.0); - EXPECT_MAT_NEAR(src1_roi, Mat(gdst1), 0.0); + EXPECT_MAT_NEAR(src1, Mat(gsrc1_whole), 0.0); + EXPECT_MAT_NEAR(src1_roi, Mat(gsrc1_roi), 0.0); } } @@ -687,7 +607,7 @@ TEST_P(Flip, X) random_roi(); cv::flip(src1_roi, dst1_roi, 0); - cv::ocl::flip(gsrc1, gdst1, 0); + cv::ocl::flip(gsrc1_roi, gdst1_roi, 0); Near(1e-5); } } @@ -699,7 +619,7 @@ TEST_P(Flip, Y) random_roi(); cv::flip(src1_roi, dst1_roi, 1); - cv::ocl::flip(gsrc1, gdst1, 1); + cv::ocl::flip(gsrc1_roi, gdst1_roi, 1); Near(1e-5); } } @@ -711,7 +631,7 @@ TEST_P(Flip, BOTH) random_roi(); cv::flip(src1_roi, dst1_roi, -1); - cv::ocl::flip(gsrc1, gdst1, -1); + cv::ocl::flip(gsrc1_roi, gdst1_roi, -1); Near(1e-5); } } @@ -739,12 +659,12 @@ TEST_P(MinMax, MAT) { signed char val = src1_roi.at(i, j); if (val < minVal) minVal = val; - else if (val > maxVal) maxVal = val; + if (val > maxVal) maxVal = val; } } double minVal_, maxVal_; - cv::ocl::minMax(gsrc1, &minVal_, &maxVal_); + cv::ocl::minMax(gsrc1_roi, &minVal_, &maxVal_); EXPECT_DOUBLE_EQ(minVal_, minVal); EXPECT_DOUBLE_EQ(maxVal_, maxVal); @@ -777,7 +697,7 @@ TEST_P(MinMax, MASK) } double minVal_, maxVal_; - cv::ocl::minMax(gsrc1, &minVal_, &maxVal_, gmask); + cv::ocl::minMax(gsrc1_roi, &minVal_, &maxVal_, gmask_roi); EXPECT_DOUBLE_EQ(minVal, minVal_); EXPECT_DOUBLE_EQ(maxVal, maxVal_); @@ -825,7 +745,7 @@ TEST_P(MinMaxLoc, MAT) double minVal_, maxVal_; cv::Point minLoc_, maxLoc_; - cv::ocl::minMaxLoc(gsrc1, &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::ocl::oclMat()); + cv::ocl::minMaxLoc(gsrc1_roi, &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::ocl::oclMat()); double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.; if (depth == 0) @@ -938,7 +858,7 @@ TEST_P(MinMaxLoc, MASK) double minVal_, maxVal_; cv::Point minLoc_, maxLoc_; - cv::ocl::minMaxLoc(gsrc1, &minVal_, &maxVal_, &minLoc_, &maxLoc_, gmask); + cv::ocl::minMaxLoc(gsrc1_roi, &minVal_, &maxVal_, &minLoc_, &maxLoc_, gmask_roi); double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.; if (minLoc_.x == -1 || minLoc_.y == -1 || maxLoc_.x == -1 || maxLoc_.y == -1) continue; @@ -1027,7 +947,7 @@ TEST_P(Sum, MAT) random_roi(); Scalar cpures = cv::sum(src1_roi); - Scalar gpures = cv::ocl::sum(gsrc1); + Scalar gpures = cv::ocl::sum(gsrc1_roi); // check results EXPECT_NEAR(cpures[0], gpures[0], 0.1); @@ -1085,7 +1005,7 @@ TEST_P(SqrSum, MAT) CV_Assert(func != 0); Scalar cpures = func(src1_roi); - Scalar gpures = cv::ocl::sqrSum(gsrc1); + Scalar gpures = cv::ocl::sqrSum(gsrc1_roi); // check results EXPECT_NEAR(cpures[0], gpures[0], 1.0); @@ -1141,7 +1061,7 @@ TEST_P(AbsSum, MAT) CV_Assert(func != 0); Scalar cpures = func(src1_roi); - Scalar gpures = cv::ocl::absSum(gsrc1); + Scalar gpures = cv::ocl::absSum(gsrc1_roi); // check results EXPECT_NEAR(cpures[0], gpures[0], 0.1); @@ -1161,7 +1081,7 @@ TEST_P(CountNonZero, MAT) { random_roi(); int cpures = cv::countNonZero(src1_roi); - int gpures = cv::ocl::countNonZero(gsrc1); + int gpures = cv::ocl::countNonZero(gsrc1_roi); EXPECT_DOUBLE_EQ((double)cpures, (double)gpures); } @@ -1177,7 +1097,7 @@ TEST_P(Phase, angleInDegrees) { random_roi(); cv::phase(src1_roi, src2_roi, dst1_roi, true); - cv::ocl::phase(gsrc1, gsrc2, gdst1, true); + cv::ocl::phase(gsrc1_roi, gsrc2_roi, gdst1_roi, true); Near(1e-2); } @@ -1189,7 +1109,7 @@ TEST_P(Phase, angleInRadians) { random_roi(); cv::phase(src1_roi, src2_roi, dst1_roi); - cv::ocl::phase(gsrc1, gsrc2, gdst1); + cv::ocl::phase(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(1e-2); } @@ -1206,7 +1126,7 @@ TEST_P(Bitwise_and, Mat) random_roi(); cv::bitwise_and(src1_roi, src2_roi, dst1_roi); - cv::ocl::bitwise_and(gsrc1, gsrc2, gdst1); + cv::ocl::bitwise_and(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(0); } } @@ -1218,7 +1138,7 @@ TEST_P(Bitwise_and, Mat_Mask) random_roi(); cv::bitwise_and(src1_roi, src2_roi, dst1_roi, mask_roi); - cv::ocl::bitwise_and(gsrc1, gsrc2, gdst1, gmask); + cv::ocl::bitwise_and(gsrc1_roi, gsrc2_roi, gdst1_roi, gmask_roi); Near(0); } } @@ -1230,7 +1150,7 @@ TEST_P(Bitwise_and, Scalar) random_roi(); cv::bitwise_and(src1_roi, val, dst1_roi); - cv::ocl::bitwise_and(gsrc1, val, gdst1); + cv::ocl::bitwise_and(gsrc1_roi, val, gdst1_roi); Near(1e-5); } } @@ -1242,7 +1162,7 @@ TEST_P(Bitwise_and, Scalar_Mask) random_roi(); cv::bitwise_and(src1_roi, val, dst1_roi, mask_roi); - cv::ocl::bitwise_and(gsrc1, val, gdst1, gmask); + cv::ocl::bitwise_and(gsrc1_roi, val, gdst1_roi, gmask_roi); Near(1e-5); } } @@ -1258,7 +1178,7 @@ TEST_P(Bitwise_or, Mat) random_roi(); cv::bitwise_or(src1_roi, src2_roi, dst1_roi); - cv::ocl::bitwise_or(gsrc1, gsrc2, gdst1); + cv::ocl::bitwise_or(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(0); } } @@ -1270,7 +1190,7 @@ TEST_P(Bitwise_or, Mat_Mask) random_roi(); cv::bitwise_or(src1_roi, src2_roi, dst1_roi, mask_roi); - cv::ocl::bitwise_or(gsrc1, gsrc2, gdst1, gmask); + cv::ocl::bitwise_or(gsrc1_roi, gsrc2_roi, gdst1_roi, gmask_roi); Near(0); } } @@ -1282,7 +1202,7 @@ TEST_P(Bitwise_or, Scalar) random_roi(); cv::bitwise_or(src1_roi, val, dst1_roi); - cv::ocl::bitwise_or(gsrc1, val, gdst1); + cv::ocl::bitwise_or(gsrc1_roi, val, gdst1_roi); Near(1e-5); } } @@ -1294,7 +1214,7 @@ TEST_P(Bitwise_or, Scalar_Mask) random_roi(); cv::bitwise_or(src1_roi, val, dst1_roi, mask_roi); - cv::ocl::bitwise_or(gsrc1, val, gdst1, gmask); + cv::ocl::bitwise_or(gsrc1_roi, val, gdst1_roi, gmask_roi); Near(1e-5); } } @@ -1310,7 +1230,7 @@ TEST_P(Bitwise_xor, Mat) random_roi(); cv::bitwise_xor(src1_roi, src2_roi, dst1_roi); - cv::ocl::bitwise_xor(gsrc1, gsrc2, gdst1); + cv::ocl::bitwise_xor(gsrc1_roi, gsrc2_roi, gdst1_roi); Near(0); } } @@ -1322,7 +1242,7 @@ TEST_P(Bitwise_xor, Mat_Mask) random_roi(); cv::bitwise_xor(src1_roi, src2_roi, dst1_roi, mask_roi); - cv::ocl::bitwise_xor(gsrc1, gsrc2, gdst1, gmask); + cv::ocl::bitwise_xor(gsrc1_roi, gsrc2_roi, gdst1_roi, gmask_roi); Near(0); } } @@ -1334,7 +1254,7 @@ TEST_P(Bitwise_xor, Scalar) random_roi(); cv::bitwise_xor(src1_roi, val, dst1_roi); - cv::ocl::bitwise_xor(gsrc1, val, gdst1); + cv::ocl::bitwise_xor(gsrc1_roi, val, gdst1_roi); Near(1e-5); } } @@ -1346,7 +1266,7 @@ TEST_P(Bitwise_xor, Scalar_Mask) random_roi(); cv::bitwise_xor(src1_roi, val, dst1_roi, mask_roi); - cv::ocl::bitwise_xor(gsrc1, val, gdst1, gmask); + cv::ocl::bitwise_xor(gsrc1_roi, val, gdst1_roi, gmask_roi); Near(1e-5); } } @@ -1362,7 +1282,7 @@ TEST_P(Bitwise_not, Mat) random_roi(); cv::bitwise_not(src1_roi, dst1_roi); - cv::ocl::bitwise_not(gsrc1, gdst1); + cv::ocl::bitwise_not(gsrc1_roi, gdst1_roi); Near(0); } } @@ -1382,7 +1302,7 @@ TEST_P(Compare, Mat) random_roi(); cv::compare(src1_roi, src2_roi, dst1_roi, cmp_codes[i]); - cv::ocl::compare(gsrc1, gsrc2, gdst1, cmp_codes[i]); + cv::ocl::compare(gsrc1_roi, gsrc2_roi, gdst1_roi, cmp_codes[i]); Near(0); } @@ -1399,7 +1319,7 @@ TEST_P(Pow, Mat) random_roi(); double p = 4.5; cv::pow(src1_roi, p, dst1_roi); - cv::ocl::pow(gsrc1, p, gdst1); + cv::ocl::pow(gsrc1_roi, p, gdst1_roi); Near(1); } } @@ -1417,7 +1337,7 @@ TEST_P(AddWeighted, Mat) const double alpha = 2.0, beta = 1.0, gama = 3.0; cv::addWeighted(src1_roi, alpha, src2_roi, beta, gama, dst1_roi); - cv::ocl::addWeighted(gsrc1, alpha, gsrc2, beta, gama, gdst1); + cv::ocl::addWeighted(gsrc1_roi, alpha, gsrc2_roi, beta, gama, gdst1_roi); Near(1e-5); } @@ -1434,7 +1354,7 @@ TEST_P(SetIdentity, Mat) random_roi(); cv::setIdentity(dst1_roi, val); - cv::ocl::setIdentity(gdst1, val); + cv::ocl::setIdentity(gdst1_roi, val); Near(0); } @@ -1454,7 +1374,7 @@ TEST_P(MeanStdDev, Mat) Scalar gpu_mean, gpu_stddev; cv::meanStdDev(src1_roi, cpu_mean, cpu_stddev); - cv::ocl::meanStdDev(gsrc1, gpu_mean, gpu_stddev); + cv::ocl::meanStdDev(gsrc1_roi, gpu_mean, gpu_stddev); for (int i = 0; i < 4; ++i) { @@ -1480,7 +1400,7 @@ TEST_P(Norm, NORM_INF) type |= NORM_RELATIVE; const double cpuRes = cv::norm(src1_roi, src2_roi, type); - const double gpuRes = cv::ocl::norm(gsrc1, gsrc2, type); + const double gpuRes = cv::ocl::norm(gsrc1_roi, gsrc2_roi, type); EXPECT_NEAR(cpuRes, gpuRes, 0.1); } @@ -1498,7 +1418,7 @@ TEST_P(Norm, NORM_L1) type |= NORM_RELATIVE; const double cpuRes = cv::norm(src1_roi, src2_roi, type); - const double gpuRes = cv::ocl::norm(gsrc1, gsrc2, type); + const double gpuRes = cv::ocl::norm(gsrc1_roi, gsrc2_roi, type); EXPECT_NEAR(cpuRes, gpuRes, 0.1); } @@ -1516,7 +1436,7 @@ TEST_P(Norm, NORM_L2) type |= NORM_RELATIVE; const double cpuRes = cv::norm(src1_roi, src2_roi, type); - const double gpuRes = cv::ocl::norm(gsrc1, gsrc2, type); + const double gpuRes = cv::ocl::norm(gsrc1_roi, gsrc2_roi, type); EXPECT_NEAR(cpuRes, gpuRes, 0.1); } diff --git a/modules/ocl/test/test_bgfg.cpp b/modules/ocl/test/test_bgfg.cpp index 46d90c80fa..4cef342773 100644 --- a/modules/ocl/test/test_bgfg.cpp +++ b/modules/ocl/test/test_bgfg.cpp @@ -85,9 +85,7 @@ PARAM_TEST_CASE(mog, UseGray, LearningRate, bool) virtual void SetUp() { useGray = GET_PARAM(0); - learningRate = GET_PARAM(1); - useRoi = GET_PARAM(2); } }; @@ -103,7 +101,7 @@ TEST_P(mog, Update) ASSERT_FALSE(frame.empty()); cv::ocl::MOG mog; - cv::ocl::oclMat foreground = createMat_ocl(frame.size(), CV_8UC1, useRoi); + cv::ocl::oclMat foreground = createMat_ocl(rng, frame.size(), CV_8UC1, useRoi); cv::BackgroundSubtractorMOG mog_gold; cv::Mat foreground_gold; @@ -120,7 +118,7 @@ TEST_P(mog, Update) cv::swap(temp, frame); } - mog(loadMat_ocl(frame, useRoi), foreground, (float)learningRate); + mog(loadMat_ocl(rng, frame, useRoi), foreground, (float)learningRate); mog_gold(frame, foreground_gold, learningRate); @@ -165,7 +163,7 @@ TEST_P(mog2, Update) cv::ocl::MOG2 mog2; mog2.bShadowDetection = detectShadow; - cv::ocl::oclMat foreground = createMat_ocl(frame.size(), CV_8UC1, useRoi); + cv::ocl::oclMat foreground = createMat_ocl(rng, frame.size(), CV_8UC1, useRoi); cv::BackgroundSubtractorMOG2 mog2_gold; mog2_gold.set("detectShadows", detectShadow); @@ -183,7 +181,7 @@ TEST_P(mog2, Update) cv::swap(temp, frame); } - mog2(loadMat_ocl(frame, useRoi), foreground); + mog2(loadMat_ocl(rng, frame, useRoi), foreground); mog2_gold(frame, foreground_gold); @@ -218,12 +216,12 @@ TEST_P(mog2, getBackgroundImage) cap >> frame; ASSERT_FALSE(frame.empty()); - mog2(loadMat_ocl(frame, useRoi), foreground); + mog2(loadMat_ocl(rng, frame, useRoi), foreground); mog2_gold(frame, foreground_gold); } - cv::ocl::oclMat background = createMat_ocl(frame.size(), frame.type(), useRoi); + cv::ocl::oclMat background = createMat_ocl(rng, frame.size(), frame.type(), useRoi); mog2.getBackgroundImage(background); cv::Mat background_gold; diff --git a/modules/ocl/test/test_brute_force_matcher.cpp b/modules/ocl/test/test_brute_force_matcher.cpp index 4d0b45fb78..06cfbf12a2 100644 --- a/modules/ocl/test/test_brute_force_matcher.cpp +++ b/modules/ocl/test/test_brute_force_matcher.cpp @@ -72,8 +72,6 @@ namespace queryDescCount = 300; // must be even number because we split train data in some cases in two countFactor = 4; // do not change it - cv::RNG &rng = cvtest::TS::ptr()->get_rng(); - cv::Mat queryBuf, trainBuf; // Generate query descriptors randomly. diff --git a/modules/ocl/test/test_calib3d.cpp b/modules/ocl/test/test_calib3d.cpp index 7e5c4a4196..03a75aa0b0 100644 --- a/modules/ocl/test/test_calib3d.cpp +++ b/modules/ocl/test/test_calib3d.cpp @@ -46,10 +46,10 @@ #include "test_precomp.hpp" #include -#ifdef HAVE_OPENCL - using namespace cv; +#ifdef HAVE_OPENCL + PARAM_TEST_CASE(StereoMatchBM, int, int) { int n_disp; diff --git a/modules/ocl/test/test_filters.cpp b/modules/ocl/test/test_filters.cpp index 4a22ec5033..4d487827de 100644 --- a/modules/ocl/test/test_filters.cpp +++ b/modules/ocl/test/test_filters.cpp @@ -91,7 +91,6 @@ PARAM_TEST_CASE(FilterTestBase, { #ifdef RANDOMROI //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(2, mat1.cols); roirows = rng.uniform(2, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); @@ -201,7 +200,6 @@ struct ErodeDilate : FilterTestBase type = GET_PARAM(0); iterations = GET_PARAM(3); Init(type); - // rng.fill(kernel, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3)); kernel = randomMat(Size(3, 3), CV_8UC1, 0, 3); } @@ -304,7 +302,6 @@ struct GaussianBlur : FilterTestBase ksize = GET_PARAM(1); bordertype = GET_PARAM(3); Init(type); - cv::RNG &rng = TS::ptr()->get_rng(); sigma1 = rng.uniform(0.1, 1.0); sigma2 = rng.uniform(0.1, 1.0); } @@ -368,7 +365,6 @@ struct Bilateral : FilterTestBase ksize = GET_PARAM(1); bordertype = GET_PARAM(3); Init(type); - cv::RNG &rng = TS::ptr()->get_rng(); sigmacolor = rng.uniform(20, 100); sigmaspace = rng.uniform(10, 40); } diff --git a/modules/ocl/test/test_imgproc.cpp b/modules/ocl/test/test_imgproc.cpp index 4d297a7a4f..95b78cf109 100644 --- a/modules/ocl/test/test_imgproc.cpp +++ b/modules/ocl/test/test_imgproc.cpp @@ -351,33 +351,32 @@ PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bo type3 = GET_PARAM(2); type4 = GET_PARAM(3); type5 = GET_PARAM(4); - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); double min = 1, max = 20; if(type1 != nulltype) { - mat1 = randomMat(rng, size, type1, min, max, false); + mat1 = randomMat(size, type1, min, max, false); clmat1 = mat1; } if(type2 != nulltype) { - mat2 = randomMat(rng, size, type2, min, max, false); + mat2 = randomMat(size, type2, min, max, false); clmat2 = mat2; } if(type3 != nulltype) { - dst = randomMat(rng, size, type3, min, max, false); + dst = randomMat(size, type3, min, max, false); cldst = dst; } if(type4 != nulltype) { - dst1 = randomMat(rng, size, type4, min, max, false); + dst1 = randomMat(size, type4, min, max, false); cldst1 = dst1; } if(type5 != nulltype) { - mask = randomMat(rng, size, CV_8UC1, 0, 2, false); + mask = randomMat(size, CV_8UC1, 0, 2, false); cv::threshold(mask, mask, 0.5, 255., type5); clmask = mask; } @@ -388,7 +387,6 @@ PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bo { #ifdef RANDOMROI //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, mat1.cols); roirows = rng.uniform(1, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); @@ -482,7 +480,6 @@ struct CopyMakeBorder : ImgprocTestBase {}; TEST_P(CopyMakeBorder, Mat) { int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101}; - cv::RNG &rng = TS::ptr()->get_rng(); int top = rng.uniform(0, 10); int bottom = rng.uniform(0, 10); int left = rng.uniform(0, 10); @@ -634,22 +631,17 @@ PARAM_TEST_CASE(WarpTestBase, MatType, int) virtual void SetUp() { type = GET_PARAM(0); - //dsize = GET_PARAM(1); interpolation = GET_PARAM(1); - - cv::RNG &rng = TS::ptr()->get_rng(); size = cv::Size(MWIDTH, MHEIGHT); - mat1 = randomMat(rng, size, type, 5, 16, false); - dst = randomMat(rng, size, type, 5, 16, false); - + mat1 = randomMat(size, type, 5, 16, false); + dst = randomMat(size, type, 5, 16, false); } void random_roi() { #ifdef RANDOMROI //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); src_roicols = rng.uniform(1, mat1.cols); src_roirows = rng.uniform(1, mat1.rows); dst_roicols = rng.uniform(1, dst.cols); @@ -798,23 +790,22 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int) interpolation = GET_PARAM(3); bordertype = GET_PARAM(4); - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size srcSize = cv::Size(MWIDTH, MHEIGHT); cv::Size map1Size = cv::Size(MWIDTH, MHEIGHT); double min = 5, max = 16; if(srcType != nulltype) { - src = randomMat(rng, srcSize, srcType, min, max, false); + src = randomMat(srcSize, srcType, min, max, false); } if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype)) { - map1 = randomMat(rng, map1Size, map1Type, min, max, false); + map1 = randomMat(map1Size, map1Type, min, max, false); } else if (map1Type == CV_32FC1 && map2Type == CV_32FC1) { - map1 = randomMat(rng, map1Size, map1Type, min, max, false); - map2 = randomMat(rng, map1Size, map1Type, min, max, false); + map1 = randomMat(map1Size, map1Type, min, max, false); + map2 = randomMat(map1Size, map1Type, min, max, false); } else @@ -823,7 +814,7 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int) return; } - dst = randomMat(rng, map1Size, srcType, min, max, false); + dst = randomMat(map1Size, srcType, min, max, false); switch (src.channels()) { case 1: @@ -843,8 +834,6 @@ PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int) } void random_roi() { - cv::RNG &rng = TS::ptr()->get_rng(); - dst_roicols = rng.uniform(1, dst.cols); dst_roirows = rng.uniform(1, dst.rows); @@ -954,8 +943,6 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int) fy = GET_PARAM(3); interpolation = GET_PARAM(4); - cv::RNG &rng = TS::ptr()->get_rng(); - cv::Size size(MWIDTH, MHEIGHT); if(dsize == cv::Size() && !(fx > 0 && fy > 0)) @@ -970,8 +957,8 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int) dsize.height = (int)(size.height * fy); } - mat1 = randomMat(rng, size, type, 5, 16, false); - dst = randomMat(rng, dsize, type, 5, 16, false); + mat1 = randomMat(size, type, 5, 16, false); + dst = randomMat(dsize, type, 5, 16, false); } @@ -979,7 +966,6 @@ PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int) { #ifdef RANDOMROI //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); src_roicols = rng.uniform(1, mat1.cols); src_roirows = rng.uniform(1, mat1.rows); dst_roicols = (int)(src_roicols * fx); @@ -1070,18 +1056,16 @@ PARAM_TEST_CASE(Threshold, MatType, ThreshOp) type = GET_PARAM(0); threshOp = GET_PARAM(1); - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); - mat1 = randomMat(rng, size, type, 5, 16, false); - dst = randomMat(rng, size, type, 5, 16, false); + mat1 = randomMat(size, type, 5, 16, false); + dst = randomMat(size, type, 5, 16, false); } void random_roi() { #ifdef RANDOMROI //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, mat1.cols); roirows = rng.uniform(1, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); @@ -1167,22 +1151,18 @@ PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria) sr = GET_PARAM(3); crit = GET_PARAM(4); - cv::RNG &rng = TS::ptr()->get_rng(); - // MWIDTH=256, MHEIGHT=256. defined in utility.hpp cv::Size size = cv::Size(MWIDTH, MHEIGHT); - src = randomMat(rng, size, type, 5, 16, false); - dst = randomMat(rng, size, type, 5, 16, false); - dstCoor = randomMat(rng, size, typeCoor, 5, 16, false); + src = randomMat(size, type, 5, 16, false); + dst = randomMat(size, type, 5, 16, false); + dstCoor = randomMat(size, typeCoor, 5, 16, false); } void random_roi() { #ifdef RANDOMROI - cv::RNG &rng = TS::ptr()->get_rng(); - //randomize ROI roicols = rng.uniform(1, src.cols); roirows = rng.uniform(1, src.rows); @@ -1295,18 +1275,15 @@ PARAM_TEST_CASE(histTestBase, MatType, MatType) { type_src = GET_PARAM(0); - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size = cv::Size(MWIDTH, MHEIGHT); - src = randomMat(rng, size, type_src, 0, 256, false); + src = randomMat(size, type_src, 0, 256, false); } void random_roi() { #ifdef RANDOMROI - cv::RNG &rng = TS::ptr()->get_rng(); - //randomize ROI roicols = rng.uniform(1, src.cols); roirows = rng.uniform(1, src.rows); @@ -1360,8 +1337,7 @@ PARAM_TEST_CASE(CLAHE, cv::Size, double) gridSize = GET_PARAM(0); clipLimit = GET_PARAM(1); - cv::RNG &rng = TS::ptr()->get_rng(); - src = randomMat(rng, cv::Size(MWIDTH, MHEIGHT), CV_8UC1, 0, 256, false); + src = randomMat(cv::Size(MWIDTH, MHEIGHT), CV_8UC1, 0, 256, false); g_src.upload(src); } }; @@ -1413,19 +1389,15 @@ PARAM_TEST_CASE(ConvolveTestBase, MatType, bool) { type = GET_PARAM(0); - cv::RNG &rng = TS::ptr()->get_rng(); - cv::Size size(MWIDTH, MHEIGHT); - mat1 = randomMat(rng, size, type, 5, 16, false); - mat2 = randomMat(rng, size, type, 5, 16, false); - dst = randomMat(rng, size, type, 5, 16, false); - dst1 = randomMat(rng, size, type, 5, 16, false); + mat1 = randomMat(size, type, 5, 16, false); + mat2 = randomMat(size, type, 5, 16, false); + dst = randomMat(size, type, 5, 16, false); + dst1 = randomMat(size, type, 5, 16, false); } void random_roi() { - cv::RNG &rng = TS::ptr()->get_rng(); - #ifdef RANDOMROI //randomize ROI roicols = rng.uniform(1, mat1.cols); @@ -1530,7 +1502,7 @@ PARAM_TEST_CASE(ColumnSum, cv::Size) TEST_P(ColumnSum, Accuracy) { - cv::Mat src = randomMat(size, CV_32FC1); + cv::Mat src = randomMat(size, CV_32FC1, 0, 255); cv::ocl::oclMat d_dst; cv::ocl::oclMat d_src(src); diff --git a/modules/ocl/test/test_kalman.cpp b/modules/ocl/test/test_kalman.cpp index 13f9d0b81b..f684093079 100644 --- a/modules/ocl/test/test_kalman.cpp +++ b/modules/ocl/test/test_kalman.cpp @@ -69,8 +69,6 @@ TEST_P(Kalman, Accuracy) const double max_init = 1; const double max_noise = 0.1; - cv::RNG &rng = TS::ptr()->get_rng(); - Mat sample_mat(Dim, 1, CV_32F), temp_mat; oclMat Sample(Dim, 1, CV_32F); oclMat Temp(Dim, 1, CV_32F); @@ -78,7 +76,7 @@ TEST_P(Kalman, Accuracy) Size size(Sample.cols, Sample.rows); - sample_mat = randomMat(rng, size, Sample.type(), -max_init, max_init, false); + sample_mat = randomMat(size, Sample.type(), -max_init, max_init, false); Sample.upload(sample_mat); //ocl start @@ -120,7 +118,7 @@ TEST_P(Kalman, Accuracy) cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu); Size size1(Temp.cols, Temp.rows); - Mat temp = randomMat(rng, size1, Temp.type(), 0, 0xffff, false); + Mat temp = randomMat(size1, Temp.type(), 0, 0xffff, false); cv::multiply(2, temp, temp); diff --git a/modules/ocl/test/test_kmeans.cpp b/modules/ocl/test/test_kmeans.cpp index 1ea0b1cb21..c83a91460f 100644 --- a/modules/ocl/test/test_kmeans.cpp +++ b/modules/ocl/test/test_kmeans.cpp @@ -66,12 +66,11 @@ PARAM_TEST_CASE(Kmeans, int, int, int) Mat labels, centers; ocl::oclMat d_labels, d_centers; - cv::RNG rng ; - virtual void SetUp(){ + virtual void SetUp() + { K = GET_PARAM(0); type = GET_PARAM(1); flags = GET_PARAM(2); - rng = TS::ptr()->get_rng(); // MWIDTH=256, MHEIGHT=256. defined in utility.hpp cv::Size size = cv::Size(MWIDTH, MHEIGHT); @@ -92,7 +91,7 @@ PARAM_TEST_CASE(Kmeans, int, int, int) { Mat cur_row_header = src.row(row_idx + 1 + j); center_row_header.copyTo(cur_row_header); - Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), -200, 200, false); + Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), -200, 200, false); cur_row_header += tmpmat; } row_idx += 1 + max_neighbour; diff --git a/modules/ocl/test/test_match_template.cpp b/modules/ocl/test/test_match_template.cpp index 651d34b81b..350c20293e 100644 --- a/modules/ocl/test/test_match_template.cpp +++ b/modules/ocl/test/test_match_template.cpp @@ -72,8 +72,8 @@ PARAM_TEST_CASE(MatchTemplate8U, cv::Size, TemplateSize, Channels, TemplateMetho TEST_P(MatchTemplate8U, Accuracy) { - cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn)); - cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn)); + cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn), 0, 255); + cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn), 0, 255); cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ); cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method); @@ -105,8 +105,8 @@ PARAM_TEST_CASE(MatchTemplate32F, cv::Size, TemplateSize, Channels, TemplateMeth TEST_P(MatchTemplate32F, Accuracy) { - cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn)); - cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn)); + cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn), 0, 255); + cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn), 0, 255); cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ); cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method); diff --git a/modules/ocl/test/test_matrix_operation.cpp b/modules/ocl/test/test_matrix_operation.cpp index bc8cdf2bb3..90e3fff391 100644 --- a/modules/ocl/test/test_matrix_operation.cpp +++ b/modules/ocl/test/test_matrix_operation.cpp @@ -90,10 +90,8 @@ PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType, int, bool) use_roi = GET_PARAM(3); - cv::RNG &rng = TS::ptr()->get_rng(); - - mat = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), src_type, 5, 136, false); - dst = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : mat.size(), dst_type, 5, 136, false); + mat = randomMat(randomSize(MIN_VALUE, MAX_VALUE), src_type, 5, 136, false); + dst = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : mat.size(), dst_type, 5, 136, false); } void random_roi() @@ -101,7 +99,6 @@ PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType, int, bool) if (use_roi) { // randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, MIN_VALUE); roirows = rng.uniform(1, MIN_VALUE); srcx = rng.uniform(0, mat.cols - roicols); @@ -178,11 +175,9 @@ PARAM_TEST_CASE(CopyToTestBase, MatType, int, bool) int type = CV_MAKETYPE(GET_PARAM(0), GET_PARAM(1)); use_roi = GET_PARAM(2); - cv::RNG &rng = TS::ptr()->get_rng(); - - src = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); - dst = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), type, 5, 16, false); - mask = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false); + src = randomMat(randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); + dst = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), type, 5, 16, false); + mask = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false); cv::threshold(mask, mask, 0.5, 255., CV_8UC1); } @@ -192,7 +187,6 @@ PARAM_TEST_CASE(CopyToTestBase, MatType, int, bool) if (use_roi) { // randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, MIN_VALUE); roirows = rng.uniform(1, MIN_VALUE); srcx = rng.uniform(0, src.cols - roicols); @@ -295,11 +289,10 @@ PARAM_TEST_CASE(SetToTestBase, MatType, int, bool) channels = GET_PARAM(1); use_roi = GET_PARAM(2); - cv::RNG &rng = TS::ptr()->get_rng(); int type = CV_MAKE_TYPE(depth, channels); - src = randomMat(rng, randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); - mask = randomMat(rng, use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false); + src = randomMat(randomSize(MIN_VALUE, MAX_VALUE), type, 5, 16, false); + mask = randomMat(use_roi ? randomSize(MIN_VALUE, MAX_VALUE) : src.size(), CV_8UC1, 0, 2, false); cv::threshold(mask, mask, 0.5, 255., CV_8UC1); val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), @@ -311,7 +304,6 @@ PARAM_TEST_CASE(SetToTestBase, MatType, int, bool) if (use_roi) { // randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, MIN_VALUE); roirows = rng.uniform(1, MIN_VALUE); srcx = rng.uniform(0, src.cols - roicols); @@ -401,8 +393,7 @@ PARAM_TEST_CASE(convertC3C4, MatType, bool) use_roi = GET_PARAM(1); int type = CV_MAKE_TYPE(depth, 3); - cv::RNG &rng = TS::ptr()->get_rng(); - src = randomMat(rng, randomSize(1, MAX_VALUE), type, 0, 40, false); + src = randomMat(randomSize(1, MAX_VALUE), type, 0, 40, false); } void random_roi() @@ -410,7 +401,6 @@ PARAM_TEST_CASE(convertC3C4, MatType, bool) if (use_roi) { //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, src.cols); roirows = rng.uniform(1, src.rows); srcx = rng.uniform(0, src.cols - roicols); diff --git a/modules/ocl/test/test_ml.cpp b/modules/ocl/test/test_ml.cpp index af86d35a65..4e00326f29 100644 --- a/modules/ocl/test/test_ml.cpp +++ b/modules/ocl/test/test_ml.cpp @@ -50,10 +50,9 @@ using namespace cv::ocl; using namespace cvtest; using namespace testing; ///////K-NEAREST NEIGHBOR////////////////////////// -static void genTrainData(Mat& trainData, int trainDataRow, int trainDataCol, +static void genTrainData(cv::RNG& rng, Mat& trainData, int trainDataRow, int trainDataCol, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0) { - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(trainDataCol, trainDataRow); trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false); if(nClasses != 0) @@ -85,10 +84,10 @@ TEST_P(KNN, Accuracy) { Mat trainData, trainLabels; const int trainDataRow = 500; - genTrainData(trainData, trainDataRow, trainDataCol, trainLabels, nClass); + genTrainData(rng, trainData, trainDataRow, trainDataCol, trainLabels, nClass); Mat testData, testLabels; - genTrainData(testData, testDataRow, trainDataCol); + genTrainData(rng, testData, testDataRow, trainDataCol); KNearestNeighbour knn_ocl; CvKNearest knn_cpu; @@ -130,7 +129,6 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int) int svm_type; Mat src, labels, samples, labels_predict; int K; - cv::RNG rng ; virtual void SetUp() { @@ -138,7 +136,6 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int) kernel_type = GET_PARAM(0); svm_type = GET_PARAM(1); K = GET_PARAM(2); - rng = TS::ptr()->get_rng(); cv::Size size = cv::Size(MWIDTH, MHEIGHT); src.create(size, CV_32FC1); labels.create(1, size.height, CV_32SC1); @@ -160,7 +157,7 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int) { Mat cur_row_header = src.row(row_idx + 1 + j); center_row_header.copyTo(cur_row_header); - Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false); + Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false); cur_row_header += tmpmat; labels.at(0, row_idx + 1 + j) = i; } @@ -187,7 +184,7 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int) { Mat cur_row_header = samples.row(row_idx + 1 + j); center_row_header.copyTo(cur_row_header); - Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false); + Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false); cur_row_header += tmpmat; labels_predict.at(0, row_idx + 1 + j) = i; } diff --git a/modules/ocl/test/test_moments.cpp b/modules/ocl/test/test_moments.cpp index 65034acfe3..9085ba1f0c 100644 --- a/modules/ocl/test/test_moments.cpp +++ b/modules/ocl/test/test_moments.cpp @@ -9,7 +9,7 @@ using namespace cv::ocl; using namespace cvtest; using namespace testing; using namespace std; -extern string workdir; + PARAM_TEST_CASE(MomentsTest, MatType, bool) { int type; @@ -20,9 +20,8 @@ PARAM_TEST_CASE(MomentsTest, MatType, bool) { type = GET_PARAM(0); test_contours = GET_PARAM(1); - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(10*MWIDTH, 10*MHEIGHT); - mat1 = randomMat(rng, size, type, 5, 16, false); + mat1 = randomMat(size, type, 5, 16, false); } void Compare(Moments& cpu, Moments& gpu) @@ -39,7 +38,6 @@ PARAM_TEST_CASE(MomentsTest, MatType, bool) TEST_P(MomentsTest, Mat) { bool binaryImage = 0; - SetUp(); for(int j = 0; j < LOOP_TIMES; j++) { diff --git a/modules/ocl/test/test_objdetect.cpp b/modules/ocl/test/test_objdetect.cpp index 5da36b386a..ffed506560 100644 --- a/modules/ocl/test/test_objdetect.cpp +++ b/modules/ocl/test/test_objdetect.cpp @@ -51,8 +51,6 @@ using namespace cv; using namespace testing; #ifdef HAVE_OPENCL -extern string workdir; - ///////////////////// HOG ///////////////////////////// PARAM_TEST_CASE(HOG, Size, int) { diff --git a/modules/ocl/test/test_optflow.cpp b/modules/ocl/test/test_optflow.cpp index 57aeabac29..6113d14493 100644 --- a/modules/ocl/test/test_optflow.cpp +++ b/modules/ocl/test/test_optflow.cpp @@ -54,9 +54,6 @@ using namespace cvtest; using namespace testing; using namespace std; -extern string workdir; - - ////////////////////////////////////////////////////// // GoodFeaturesToTrack namespace @@ -153,9 +150,8 @@ TEST_P(TVL1, Accuracy) ASSERT_FALSE(frame1.empty()); cv::ocl::OpticalFlowDual_TVL1_OCL d_alg; - cv::RNG &rng = TS::ptr()->get_rng(); - cv::Mat flowx = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi); - cv::Mat flowy = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi); + cv::Mat flowx = randomMat(frame0.size(), CV_32FC1, 0, 0, useRoi); + cv::Mat flowy = randomMat(frame0.size(), CV_32FC1, 0, 0, useRoi); cv::ocl::oclMat d_flowx(flowx), d_flowy(flowy); d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy); diff --git a/modules/ocl/test/test_precomp.hpp b/modules/ocl/test/test_precomp.hpp index b2e891027f..fbdbdb82f4 100644 --- a/modules/ocl/test/test_precomp.hpp +++ b/modules/ocl/test/test_precomp.hpp @@ -73,4 +73,6 @@ #include "utility.hpp" //#include "add_test_info.h" +using namespace cvtest; + #endif diff --git a/modules/ocl/test/test_pyramids.cpp b/modules/ocl/test/test_pyramids.cpp index 9070ee5aa7..ddbe14d112 100644 --- a/modules/ocl/test/test_pyramids.cpp +++ b/modules/ocl/test/test_pyramids.cpp @@ -79,7 +79,7 @@ TEST_P(PyrDown, Mat) for (int j = 0; j < LOOP_TIMES; j++) { Size size(MWIDTH, MHEIGHT); - Mat src = randomMat(size, CV_MAKETYPE(depth, channels)); + Mat src = randomMat(size, CV_MAKETYPE(depth, channels), 0, 255); oclMat gsrc(src); pyrDown(src, dst_cpu); @@ -102,7 +102,7 @@ TEST_P(PyrUp, Accuracy) for (int j = 0; j < LOOP_TIMES; j++) { Size size(MWIDTH, MHEIGHT); - Mat src = randomMat(size, CV_MAKETYPE(depth, channels)); + Mat src = randomMat(size, CV_MAKETYPE(depth, channels), 0, 255); oclMat gsrc(src); pyrUp(src, dst_cpu); diff --git a/modules/ocl/test/test_split_merge.cpp b/modules/ocl/test/test_split_merge.cpp index 52db49b028..d205db8287 100644 --- a/modules/ocl/test/test_split_merge.cpp +++ b/modules/ocl/test/test_split_merge.cpp @@ -90,12 +90,11 @@ PARAM_TEST_CASE(MergeTestBase, MatType, int, bool) channels = GET_PARAM(1); use_roi = GET_PARAM(2); - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); for (int i = 0; i < channels; ++i) - mat[i] = randomMat(rng, size, CV_MAKETYPE(type, 1), 5, 16, false); - dst = randomMat(rng, size, CV_MAKETYPE(type, channels), 5, 16, false); + mat[i] = randomMat(size, CV_MAKETYPE(type, 1), 5, 16, false); + dst = randomMat(size, CV_MAKETYPE(type, channels), 5, 16, false); } void random_roi() @@ -103,7 +102,6 @@ PARAM_TEST_CASE(MergeTestBase, MatType, int, bool) if (use_roi) { //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, mat[0].cols); roirows = rng.uniform(1, mat[0].rows); @@ -191,19 +189,17 @@ PARAM_TEST_CASE(SplitTestBase, MatType, int, bool) channels = GET_PARAM(1); use_roi = GET_PARAM(2); - cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); - mat = randomMat(rng, size, CV_MAKETYPE(type, channels), 5, 16, false); + mat = randomMat(size, CV_MAKETYPE(type, channels), 5, 16, false); for (int i = 0; i < channels; ++i) - dst[i] = randomMat(rng, size, CV_MAKETYPE(type, 1), 5, 16, false); } + dst[i] = randomMat(size, CV_MAKETYPE(type, 1), 5, 16, false); } void random_roi() { if (use_roi) { //randomize ROI - cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, mat.cols); roirows = rng.uniform(1, mat.rows); srcx = rng.uniform(0, mat.cols - roicols); diff --git a/modules/ocl/test/utility.cpp b/modules/ocl/test/utility.cpp index 954d25b80d..dea14a9108 100644 --- a/modules/ocl/test/utility.cpp +++ b/modules/ocl/test/utility.cpp @@ -46,7 +46,7 @@ using namespace cv; using namespace cv::gpu; using namespace cvtest; - +namespace cvtest { //std::string generateVarList(int first,...) //{ // vector varname; @@ -73,41 +73,14 @@ using namespace cvtest; // return ss.str(); //}; -int randomInt(int minVal, int maxVal) -{ - RNG &rng = TS::ptr()->get_rng(); - return rng.uniform(minVal, maxVal); -} - -double randomDouble(double minVal, double maxVal) -{ - RNG &rng = TS::ptr()->get_rng(); - return rng.uniform(minVal, maxVal); -} - -Size randomSize(int minVal, int maxVal) -{ - return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); -} - -Scalar randomScalar(double minVal, double maxVal) -{ - return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); -} - -Mat randomMat(Size size, int type, double minVal, double maxVal) -{ - return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false); -} - -cv::ocl::oclMat createMat_ocl(Size size, int type, bool useRoi) +cv::ocl::oclMat createMat_ocl(cv::RNG& rng, Size size, int type, bool useRoi) { Size size0 = size; if (useRoi) { - size0.width += randomInt(5, 15); - size0.height += randomInt(5, 15); + size0.width += rng.uniform(5, 15); + size0.height += rng.uniform(5, 15); } cv::ocl::oclMat d_m(size0, type); @@ -118,11 +91,11 @@ cv::ocl::oclMat createMat_ocl(Size size, int type, bool useRoi) return d_m; } -cv::ocl::oclMat loadMat_ocl(const Mat& m, bool useRoi) +cv::ocl::oclMat loadMat_ocl(cv::RNG& rng, const Mat& m, bool useRoi) { CV_Assert(m.type() == CV_8UC1 || m.type() == CV_8UC3); cv::ocl::oclMat d_m; - d_m = createMat_ocl(m.size(), m.type(), useRoi); + d_m = createMat_ocl(rng, m.size(), m.type(), useRoi); Size ls; Point pt; @@ -138,38 +111,6 @@ cv::ocl::oclMat loadMat_ocl(const Mat& m, bool useRoi) m_ocl.copyTo(d_m); return d_m; } -/* -void showDiff(InputArray gold_, InputArray actual_, double eps) -{ - Mat gold; - if (gold_.kind() == _InputArray::MAT) - gold = gold_.getMat(); - else - gold_.getGpuMat().download(gold); - - Mat actual; - if (actual_.kind() == _InputArray::MAT) - actual = actual_.getMat(); - else - actual_.getGpuMat().download(actual); - - Mat diff; - absdiff(gold, actual, diff); - threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY); - - namedWindow("gold", WINDOW_NORMAL); - namedWindow("actual", WINDOW_NORMAL); - namedWindow("diff", WINDOW_NORMAL); - - imshow("gold", gold); - imshow("actual", actual); - imshow("diff", diff); - - waitKey(); -} -*/ - - vector types(int depth_start, int depth_end, int cn_start, int cn_end) { @@ -289,3 +230,5 @@ double checkRectSimilarity(Size sz, std::vector& ob1, std::vector& o } return final_test_result; } + +} // namespace cvtest diff --git a/modules/ocl/test/utility.hpp b/modules/ocl/test/utility.hpp index 7c491916fc..b2ec83cc4d 100644 --- a/modules/ocl/test/utility.hpp +++ b/modules/ocl/test/utility.hpp @@ -42,7 +42,7 @@ #ifndef __OPENCV_TEST_UTILITY_HPP__ #define __OPENCV_TEST_UTILITY_HPP__ -#define LOOP_TIMES 1 +#define LOOP_TIMES 10 #define MWIDTH 256 #define MHEIGHT 256 @@ -50,16 +50,12 @@ #define MIN_VALUE 171 #define MAX_VALUE 357 -//#define RANDOMROI -int randomInt(int minVal, int maxVal); -double randomDouble(double minVal, double maxVal); -//std::string generateVarList(int first,...); -std::string generateVarList(int &p1, int &p2); -cv::Size randomSize(int minVal, int maxVal); -cv::Scalar randomScalar(double minVal, double maxVal); -cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0); +namespace cvtest { -void showDiff(cv::InputArray gold, cv::InputArray actual, double eps); +//void showDiff(cv::InputArray gold, cv::InputArray actual, double eps); + +cv::ocl::oclMat createMat_ocl(cv::RNG& rng, Size size, int type, bool useRoi); +cv::ocl::oclMat loadMat_ocl(cv::RNG& rng, const Mat& m, bool useRoi); // This function test if gpu_rst matches cpu_rst. // If the two vectors are not equal, it will return the difference in vector size @@ -76,10 +72,6 @@ double checkNorm(const cv::Mat &m); double checkNorm(const cv::Mat &m1, const cv::Mat &m2); double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2); -//oclMat create -cv::ocl::oclMat createMat_ocl(cv::Size size, int type, bool useRoi = false); -cv::ocl::oclMat loadMat_ocl(const cv::Mat& m, bool useRoi = false); - #define EXPECT_MAT_NORM(mat, eps) \ { \ EXPECT_LE(checkNorm(cv::Mat(mat)), eps) \ @@ -99,13 +91,6 @@ cv::ocl::oclMat loadMat_ocl(const cv::Mat& m, bool useRoi = false); EXPECT_LE(checkSimilarity(cv::Mat(mat1), cv::Mat(mat2)), eps); \ } -namespace cv -{ - namespace ocl - { - // void PrintTo(const DeviceInfo& info, std::ostream* os); - } -} using perf::MatDepth; using perf::MatType; @@ -132,79 +117,105 @@ private: void PrintTo(const Inverse &useRoi, std::ostream *os); -enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1}; -CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y) +#define OCL_RNG_SEED 123456 -CV_ENUM(CmpCode, CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE) -CV_ENUM(NormCode, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX) -CV_ENUM(ReduceOp, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN) -CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT) -CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) -CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC) -CV_ENUM(Border, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP) -CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) +template +struct TSTestWithParam : public ::testing::TestWithParam +{ + cv::RNG rng; -CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T); -CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP) -CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT) + TSTestWithParam() + { + rng = cv::RNG(OCL_RNG_SEED); + } -void run_perf_test(); + int randomInt(int minVal, int maxVal) + { + return rng.uniform(minVal, maxVal); + } -#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > > + double randomDouble(double minVal, double maxVal) + { + return rng.uniform(minVal, maxVal); + } -#define GET_PARAM(k) std::tr1::get< k >(GetParam()) + double randomDoubleLog(double minVal, double maxVal) + { + double logMin = log((double)minVal + 1); + double logMax = log((double)maxVal + 1); + double pow = rng.uniform(logMin, logMax); + double v = exp(pow) - 1; + CV_Assert(v >= minVal && (v < maxVal || (v == minVal && v == maxVal))); + return v; + } -#define ALL_DEVICES testing::ValuesIn(devices()) -#define DEVICES(feature) testing::ValuesIn(devices(feature)) + Size randomSize(int minVal, int maxVal) + { +#if 1 + return cv::Size((int)randomDoubleLog(minVal, maxVal), (int)randomDoubleLog(minVal, maxVal)); +#else + return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); +#endif + } -#define ALL_TYPES testing::ValuesIn(all_types()) -#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end)) + Size randomSize(int minValX, int maxValX, int minValY, int maxValY) + { +#if 1 + return cv::Size(randomDoubleLog(minValX, maxValX), randomDoubleLog(minValY, maxValY)); +#else + return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); +#endif + } -#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300)) + Scalar randomScalar(double minVal, double maxVal) + { + return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); + } -#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true)) + Mat randomMat(Size size, int type, double minVal, double maxVal, bool useRoi = false) + { + RNG dataRng(rng.next()); + return cvtest::randomMat(dataRng, size, type, minVal, maxVal, useRoi); + } -#ifndef ALL_DEPTH -#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F)) -#endif -#define REPEAT 1000 -#define COUNT_U 0 // count the uploading execution time for ocl mat structures -#define COUNT_D 0 -// the following macro section tests the target function (kernel) performance -// upload is the code snippet for converting cv::mat to cv::ocl::oclMat -// downloading is the code snippet for converting cv::ocl::oclMat back to cv::mat -// change COUNT_U and COUNT_D to take downloading and uploading time into account -#define P_TEST_FULL( upload, kernel_call, download ) \ -{ \ - std::cout<< "\n" #kernel_call "\n----------------------"; \ - {upload;} \ - R_TEST( kernel_call, 2 ); \ - double t = (double)cvGetTickCount(); \ - R_T( { \ - if( COUNT_U ) {upload;} \ - kernel_call; \ - if( COUNT_D ) {download;} \ - } ); \ - t = (double)cvGetTickCount() - t; \ - std::cout << "runtime is " << t/((double)cvGetTickFrequency()* 1000.) << "ms" << std::endl; \ -} + struct Border + { + int top, bot, lef, rig; + }; -#define R_T2( test ) \ -{ \ - std::cout<< "\n" #test "\n----------------------"; \ - R_TEST( test, 15 ) \ - clock_t st = clock(); \ - R_T( test ) \ - std::cout<< clock() - st << "ms\n"; \ -} -#define R_T( test ) \ - R_TEST( test, REPEAT ) -#define R_TEST( test, repeat ) \ - try{ \ - for( int i = 0; i < repeat; i ++ ) { test; } \ - } catch( ... ) { std::cout << "||||| Exception catched! |||||\n"; return; } + Border randomBorder(int minValue = 0, int maxValue = MAX_VALUE) + { + Border border = { + (int)randomDoubleLog(minValue, maxValue), + (int)randomDoubleLog(minValue, maxValue), + (int)randomDoubleLog(minValue, maxValue), + (int)randomDoubleLog(minValue, maxValue) + }; + return border; + } + + void randomSubMat(Mat& whole, Mat& subMat, const Size& roiSize, const Border& border, int type, double minVal, double maxVal) + { + Size wholeSize = Size(roiSize.width + border.lef + border.rig, roiSize.height + border.top + border.bot); + whole = randomMat(wholeSize, type, minVal, maxVal, false); + subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height)); + } + + void generateOclMat(cv::ocl::oclMat& whole, cv::ocl::oclMat& subMat, const Mat& wholeMat, const Size& roiSize, const Border& border) + { + whole = wholeMat; + subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height)); + } +}; + +#define PARAM_TEST_CASE(name, ...) struct name : public TSTestWithParam< std::tr1::tuple< __VA_ARGS__ > > + +#define GET_PARAM(k) std::tr1::get< k >(GetParam()) + +#define ALL_TYPES testing::ValuesIn(all_types()) +#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end)) -//////// Utility +#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300)) #define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4)) #ifndef IMPLEMENT_PARAM_CLASS @@ -225,4 +236,22 @@ void run_perf_test(); IMPLEMENT_PARAM_CLASS(Channels, int) #endif // IMPLEMENT_PARAM_CLASS +} // namespace cvtest + +enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1}; +CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y) + +CV_ENUM(CmpCode, CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE) +CV_ENUM(NormCode, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX) +CV_ENUM(ReduceOp, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN) +CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT) +CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) +CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC) +CV_ENUM(Border, BORDER_REFLECT101, BORDER_REPLICATE, BORDER_CONSTANT, BORDER_REFLECT, BORDER_WRAP) +CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) + +CV_FLAGS(GemmFlags, GEMM_1_T, GEMM_2_T, GEMM_3_T); +CV_FLAGS(WarpFlags, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, WARP_INVERSE_MAP) +CV_FLAGS(DftFlags, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT) + #endif // __OPENCV_TEST_UTILITY_HPP__