What we have now corresponds to "formal simplex algorithm", described in Cormen's "Intro to Algorithms". It will work *only* if the initial problem has (0,0,0,...,0) as feasible solution (consequently, it will work unpredictably if problem was unfeasible or did not have zero-vector as feasible solution). Moreover, it might cycle. TODO (first priority) 1. Implement initialize_simplex() procedure, that shall check for feasibility and generate initial feasible solution. (in particular, code should pass all 4 tests implemented at the moment) 2. Implement Bland's rule to avoid cycling. 3. Make the code more clear. 4. Implement several non-trivial tests (??) and check algorithm against them. Debug if necessary. TODO (second priority) 1. Concentrate on stability and speed (make difficult tests)pull/1192/head
parent
b216c0940c
commit
ddc0010e7d
6 changed files with 338 additions and 14 deletions
@ -0,0 +1,61 @@ |
|||||||
|
#include "test_precomp.hpp" |
||||||
|
#include "opencv2/optim.hpp" |
||||||
|
|
||||||
|
TEST(Optim_LpSolver, regression) |
||||||
|
{ |
||||||
|
cv::Mat A,B,z,etalon_z; |
||||||
|
|
||||||
|
if(true){ |
||||||
|
//cormen's example #1
|
||||||
|
A=(cv::Mat_<double>(1,3)<<3,1,2); |
||||||
|
B=(cv::Mat_<double>(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36); |
||||||
|
std::cout<<"here A goes\n"<<A<<"\n"; |
||||||
|
cv::optim::solveLP(A,B,z); |
||||||
|
std::cout<<"here z goes\n"<<z<<"\n"; |
||||||
|
etalon_z=(cv::Mat_<double>(1,3)<<8,4,0); |
||||||
|
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); |
||||||
|
} |
||||||
|
|
||||||
|
if(true){ |
||||||
|
//cormen's example #2
|
||||||
|
A=(cv::Mat_<double>(1,2)<<18,12.5); |
||||||
|
B=(cv::Mat_<double>(3,3)<<1,1,20,1,0,20,0,1,16); |
||||||
|
std::cout<<"here A goes\n"<<A<<"\n"; |
||||||
|
cv::optim::solveLP(A,B,z); |
||||||
|
std::cout<<"here z goes\n"<<z<<"\n"; |
||||||
|
etalon_z=(cv::Mat_<double>(1,2)<<20,0); |
||||||
|
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); |
||||||
|
} |
||||||
|
|
||||||
|
if(true){ |
||||||
|
//cormen's example #3
|
||||||
|
A=(cv::Mat_<double>(1,2)<<5,-3); |
||||||
|
B=(cv::Mat_<double>(2,3)<<1,-1,1,2,1,2); |
||||||
|
std::cout<<"here A goes\n"<<A<<"\n"; |
||||||
|
cv::optim::solveLP(A,B,z); |
||||||
|
std::cout<<"here z goes\n"<<z<<"\n"; |
||||||
|
etalon_z=(cv::Mat_<double>(1,2)<<1,0); |
||||||
|
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); |
||||||
|
|
||||||
|
} |
||||||
|
if(false){ |
||||||
|
//cormen's example #4 - unfeasible
|
||||||
|
A=(cv::Mat_<double>(1,3)<<-1,-1,-1); |
||||||
|
B=(cv::Mat_<double>(2,4)<<-2,-7.5,-3,-10000,-20,-5,-10,-30000); |
||||||
|
std::cout<<"here A goes\n"<<A<<"\n"; |
||||||
|
cv::optim::solveLP(A,B,z); |
||||||
|
std::cout<<"here z goes\n"<<z<<"\n"; |
||||||
|
etalon_z=(cv::Mat_<double>(1,2)<<1,0); |
||||||
|
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
//TODO
|
||||||
|
// get optimal solution from initial (0,0,...,0) - DONE
|
||||||
|
// milestone: pass first test (wo initial solution) - DONE
|
||||||
|
// learn how to get initial solution
|
||||||
|
// Blands_rule
|
||||||
|
// 1_more_test & make_more_clear
|
||||||
|
// -> **contact_Vadim**: min_l2_norm, init_optional_fsbl_check, error_codes, comment_style-too_many?, copyTo temp headers
|
||||||
|
// ??how to get smallest l2 norm
|
||||||
|
// FUTURE: compress&debug-> more_tests(Cormen) -> readNumRecipes-> fast&stable || hill_climbing
|
@ -0,0 +1,3 @@ |
|||||||
|
#include "test_precomp.hpp" |
||||||
|
|
||||||
|
CV_TEST_MAIN("cv") |
@ -0,0 +1 @@ |
|||||||
|
#include "test_precomp.hpp" |
@ -0,0 +1,15 @@ |
|||||||
|
#ifdef __GNUC__ |
||||||
|
# pragma GCC diagnostic ignored "-Wmissing-declarations" |
||||||
|
# if defined __clang__ || defined __APPLE__ |
||||||
|
# pragma GCC diagnostic ignored "-Wmissing-prototypes" |
||||||
|
# pragma GCC diagnostic ignored "-Wextra" |
||||||
|
# endif |
||||||
|
#endif |
||||||
|
|
||||||
|
#ifndef __OPENCV_TEST_PRECOMP_HPP__ |
||||||
|
#define __OPENCV_TEST_PRECOMP_HPP__ |
||||||
|
|
||||||
|
#include "opencv2/ts.hpp" |
||||||
|
#include "opencv2/optim.hpp" |
||||||
|
|
||||||
|
#endif |
Loading…
Reference in new issue