|
|
|
@ -41,5 +41,419 @@ |
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
#include <queue> |
|
|
|
|
|
|
|
|
|
cv::FeaturePool::~FeaturePool(){} |
|
|
|
|
#define WITH_DEBUG_OUT |
|
|
|
|
|
|
|
|
|
#if defined WITH_DEBUG_OUT |
|
|
|
|
# include <stdio.h> |
|
|
|
|
# define dprintf(format, ...) \ |
|
|
|
|
do { printf(format, ##__VA_ARGS__); } while (0) |
|
|
|
|
#else |
|
|
|
|
# define dprintf(format, ...) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1600 |
|
|
|
|
|
|
|
|
|
# include <random> |
|
|
|
|
namespace sft { |
|
|
|
|
struct Random |
|
|
|
|
{ |
|
|
|
|
typedef std::mt19937 engine; |
|
|
|
|
typedef std::uniform_int<int> uniform; |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#elif (__GNUC__) && __GNUC__ > 3 && __GNUC_MINOR__ > 1 |
|
|
|
|
|
|
|
|
|
# if defined (__cplusplus) && __cplusplus > 201100L |
|
|
|
|
# include <random> |
|
|
|
|
namespace sft { |
|
|
|
|
struct Random |
|
|
|
|
{ |
|
|
|
|
typedef std::mt19937 engine; |
|
|
|
|
typedef std::uniform_int<int> uniform; |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
# else |
|
|
|
|
# include <tr1/random> |
|
|
|
|
|
|
|
|
|
namespace sft { |
|
|
|
|
struct Random |
|
|
|
|
{ |
|
|
|
|
typedef std::tr1::mt19937 engine; |
|
|
|
|
typedef std::tr1::uniform_int<int> uniform; |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
# endif |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
#include <opencv2/core/core.hpp> |
|
|
|
|
namespace rnd { |
|
|
|
|
|
|
|
|
|
typedef cv::RNG engine; |
|
|
|
|
|
|
|
|
|
template<typename T> |
|
|
|
|
struct uniform_int |
|
|
|
|
{ |
|
|
|
|
uniform_int(const int _min, const int _max) : min(_min), max(_max) {} |
|
|
|
|
T operator() (engine& eng, const int bound) const |
|
|
|
|
{ |
|
|
|
|
return (T)eng.uniform(min, bound); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
T operator() (engine& eng) const |
|
|
|
|
{ |
|
|
|
|
return (T)eng.uniform(min, max); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
int min; |
|
|
|
|
int max; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace sft { |
|
|
|
|
struct Random |
|
|
|
|
{ |
|
|
|
|
typedef rnd::engine engine; |
|
|
|
|
typedef rnd::uniform_int<int> uniform; |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
cv::FeaturePool::~FeaturePool(){} |
|
|
|
|
cv::Dataset::~Dataset(){} |
|
|
|
|
|
|
|
|
|
cv::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr) |
|
|
|
|
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr) |
|
|
|
|
{ |
|
|
|
|
int maxSample = npositives + nnegatives; |
|
|
|
|
responses.create(maxSample, 1, CV_32FC1); |
|
|
|
|
|
|
|
|
|
CvBoostParams _params; |
|
|
|
|
{ |
|
|
|
|
// tree params
|
|
|
|
|
_params.max_categories = 10; |
|
|
|
|
_params.max_depth = 2; |
|
|
|
|
_params.cv_folds = 0; |
|
|
|
|
_params.truncate_pruned_tree = false; |
|
|
|
|
_params.use_surrogates = false; |
|
|
|
|
_params.use_1se_rule = false; |
|
|
|
|
_params.regression_accuracy = 1.0e-6; |
|
|
|
|
|
|
|
|
|
// boost params
|
|
|
|
|
_params.boost_type = CvBoost::GENTLE; |
|
|
|
|
_params.split_criteria = CvBoost::SQERR; |
|
|
|
|
_params.weight_trim_rate = 0.95; |
|
|
|
|
|
|
|
|
|
// simple defaults
|
|
|
|
|
_params.min_sample_count = 2; |
|
|
|
|
_params.weak_count = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
params = _params; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Octave::~Octave(){} |
|
|
|
|
|
|
|
|
|
bool cv::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx, |
|
|
|
|
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask) |
|
|
|
|
{ |
|
|
|
|
bool update = false; |
|
|
|
|
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params, |
|
|
|
|
update); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::Octave::setRejectThresholds(cv::Mat& thresholds) |
|
|
|
|
{ |
|
|
|
|
dprintf("set thresholds according to DBP strategy\n"); |
|
|
|
|
|
|
|
|
|
// labels desided by classifier
|
|
|
|
|
cv::Mat desisions(responses.cols, responses.rows, responses.type()); |
|
|
|
|
float* dptr = desisions.ptr<float>(0); |
|
|
|
|
|
|
|
|
|
// mask of samples satisfying the condition
|
|
|
|
|
cv::Mat ppmask(responses.cols, responses.rows, CV_8UC1); |
|
|
|
|
uchar* mptr = ppmask.ptr<uchar>(0); |
|
|
|
|
|
|
|
|
|
int nsamples = npositives + nnegatives; |
|
|
|
|
|
|
|
|
|
cv::Mat stab; |
|
|
|
|
|
|
|
|
|
for (int si = 0; si < nsamples; ++si) |
|
|
|
|
{ |
|
|
|
|
float decision = dptr[si] = predict(trainData.col(si), stab, false, false); |
|
|
|
|
mptr[si] = cv::saturate_cast<uchar>((uint)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f))); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int weaks = weak->total; |
|
|
|
|
thresholds.create(1, weaks, CV_64FC1); |
|
|
|
|
double* thptr = thresholds.ptr<double>(0); |
|
|
|
|
|
|
|
|
|
cv::Mat traces(weaks, nsamples, CV_64FC1, cv::Scalar::all(FLT_MAX)); |
|
|
|
|
|
|
|
|
|
for (int w = 0; w < weaks; ++w) |
|
|
|
|
{ |
|
|
|
|
double* rptr = traces.ptr<double>(w); |
|
|
|
|
for (int si = 0; si < nsamples; ++si) |
|
|
|
|
{ |
|
|
|
|
cv::Range curr(0, w + 1); |
|
|
|
|
if (mptr[si]) |
|
|
|
|
{ |
|
|
|
|
float trace = predict(trainData.col(si), curr); |
|
|
|
|
rptr[si] = trace; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
double mintrace = 0.; |
|
|
|
|
cv::minMaxLoc(traces.row(w), &mintrace); |
|
|
|
|
thptr[w] = mintrace; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::Octave::processPositives(const Dataset* dataset, const FeaturePool* pool) |
|
|
|
|
{ |
|
|
|
|
int w = boundingBox.width; |
|
|
|
|
int h = boundingBox.height; |
|
|
|
|
|
|
|
|
|
integrals.create(pool->size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1); |
|
|
|
|
|
|
|
|
|
int total = 0; |
|
|
|
|
// for (svector::const_iterator it = dataset.pos.begin(); it != dataset.pos.end(); ++it)
|
|
|
|
|
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr) |
|
|
|
|
{ |
|
|
|
|
cv::Mat sample = dataset->get( Dataset::POSITIVE, curr); |
|
|
|
|
|
|
|
|
|
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1); |
|
|
|
|
sample = sample(boundingBox); |
|
|
|
|
|
|
|
|
|
pool->preprocess(sample, channels); |
|
|
|
|
responses.ptr<float>(total)[0] = 1.f; |
|
|
|
|
|
|
|
|
|
if (++total >= npositives) break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dprintf("Processing positives finished:\n\trequested %d positives, collected %d samples.\n", npositives, total); |
|
|
|
|
|
|
|
|
|
npositives = total; |
|
|
|
|
nnegatives = cvRound(nnegatives * total / (double)npositives); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::Octave::generateNegatives(const Dataset* dataset, const FeaturePool* pool) |
|
|
|
|
{ |
|
|
|
|
// ToDo: set seed, use offsets
|
|
|
|
|
sft::Random::engine eng(65633343L); |
|
|
|
|
sft::Random::engine idxEng(764224349868L); |
|
|
|
|
|
|
|
|
|
// int w = boundingBox.width;
|
|
|
|
|
int h = boundingBox.height; |
|
|
|
|
|
|
|
|
|
int nimages = dataset->available(Dataset::NEGATIVE); |
|
|
|
|
sft::Random::uniform iRand(0, nimages - 1); |
|
|
|
|
|
|
|
|
|
int total = 0; |
|
|
|
|
Mat sum; |
|
|
|
|
for (int i = npositives; i < nnegatives + npositives; ++total) |
|
|
|
|
{ |
|
|
|
|
int curr = iRand(idxEng); |
|
|
|
|
|
|
|
|
|
Mat frame = dataset->get(Dataset::NEGATIVE, curr); |
|
|
|
|
|
|
|
|
|
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width; |
|
|
|
|
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height; |
|
|
|
|
|
|
|
|
|
sft::Random::uniform wRand(0, maxW -1); |
|
|
|
|
sft::Random::uniform hRand(0, maxH -1); |
|
|
|
|
|
|
|
|
|
int dx = wRand(eng); |
|
|
|
|
int dy = hRand(eng); |
|
|
|
|
|
|
|
|
|
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height)); |
|
|
|
|
|
|
|
|
|
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1); |
|
|
|
|
pool->preprocess(frame, channels); |
|
|
|
|
|
|
|
|
|
dprintf("generated %d %d\n", dx, dy); |
|
|
|
|
|
|
|
|
|
// // if (predict(sum))
|
|
|
|
|
{ |
|
|
|
|
responses.ptr<float>(i)[0] = 0.f; |
|
|
|
|
++i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T> int sgn(T val) { |
|
|
|
|
return (T(0) < val) - (val < T(0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::Octave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const |
|
|
|
|
{ |
|
|
|
|
std::queue<const CvDTreeNode*> nodes; |
|
|
|
|
nodes.push( tree->get_root()); |
|
|
|
|
const CvDTreeNode* tempNode; |
|
|
|
|
int leafValIdx = 0; |
|
|
|
|
int internalNodeIdx = 1; |
|
|
|
|
float* leafs = new float[(int)pow(2.f, get_params().max_depth)]; |
|
|
|
|
|
|
|
|
|
fs << "{"; |
|
|
|
|
fs << "treeThreshold" << *th; |
|
|
|
|
fs << "internalNodes" << "["; |
|
|
|
|
while (!nodes.empty()) |
|
|
|
|
{ |
|
|
|
|
tempNode = nodes.front(); |
|
|
|
|
CV_Assert( tempNode->left ); |
|
|
|
|
if ( !tempNode->left->left && !tempNode->left->right) |
|
|
|
|
{ |
|
|
|
|
leafs[-leafValIdx] = (float)tempNode->left->value; |
|
|
|
|
fs << leafValIdx-- ; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
nodes.push( tempNode->left ); |
|
|
|
|
fs << internalNodeIdx++; |
|
|
|
|
} |
|
|
|
|
CV_Assert( tempNode->right ); |
|
|
|
|
if ( !tempNode->right->left && !tempNode->right->right) |
|
|
|
|
{ |
|
|
|
|
leafs[-leafValIdx] = (float)tempNode->right->value; |
|
|
|
|
fs << leafValIdx--; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
nodes.push( tempNode->right ); |
|
|
|
|
fs << internalNodeIdx++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int fidx = tempNode->split->var_idx; |
|
|
|
|
fs << nfeatures; |
|
|
|
|
used[nfeatures++] = fidx; |
|
|
|
|
|
|
|
|
|
fs << tempNode->split->ord.c; |
|
|
|
|
|
|
|
|
|
nodes.pop(); |
|
|
|
|
} |
|
|
|
|
fs << "]"; |
|
|
|
|
|
|
|
|
|
fs << "leafValues" << "["; |
|
|
|
|
for (int ni = 0; ni < -leafValIdx; ni++) |
|
|
|
|
fs << leafs[ni]; |
|
|
|
|
fs << "]"; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fs << "}"; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::Octave::write( cv::FileStorage &fso, const FeaturePool* pool, const Mat& thresholds) const |
|
|
|
|
{ |
|
|
|
|
CV_Assert(!thresholds.empty()); |
|
|
|
|
cv::Mat used( 1, weak->total * (pow(2, params.max_depth) - 1), CV_32SC1); |
|
|
|
|
int* usedPtr = used.ptr<int>(0); |
|
|
|
|
int nfeatures = 0; |
|
|
|
|
fso << "{" |
|
|
|
|
<< "scale" << logScale |
|
|
|
|
<< "weaks" << weak->total |
|
|
|
|
<< "trees" << "["; |
|
|
|
|
// should be replased with the H.L. one
|
|
|
|
|
CvSeqReader reader; |
|
|
|
|
cvStartReadSeq( weak, &reader); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < weak->total; i++ ) |
|
|
|
|
{ |
|
|
|
|
CvBoostTree* tree; |
|
|
|
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
|
|
|
|
|
|
|
|
traverse(tree, fso, nfeatures, usedPtr, thresholds.ptr<double>(0) + i); |
|
|
|
|
} |
|
|
|
|
fso << "]"; |
|
|
|
|
// features
|
|
|
|
|
|
|
|
|
|
fso << "features" << "["; |
|
|
|
|
for (int i = 0; i < nfeatures; ++i) |
|
|
|
|
pool->write(fso, usedPtr[i]); |
|
|
|
|
fso << "]" |
|
|
|
|
<< "}"; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::Octave::initial_weights(double (&p)[2]) |
|
|
|
|
{ |
|
|
|
|
double n = data->sample_count; |
|
|
|
|
p[0] = n / (2. * (double)(nnegatives)); |
|
|
|
|
p[1] = n / (2. * (double)(npositives)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool cv::Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(treeDepth == 2); |
|
|
|
|
CV_Assert(weaks > 0); |
|
|
|
|
|
|
|
|
|
params.max_depth = treeDepth; |
|
|
|
|
params.weak_count = weaks; |
|
|
|
|
|
|
|
|
|
// 1. fill integrals and classes
|
|
|
|
|
processPositives(dataset, pool); |
|
|
|
|
generateNegatives(dataset, pool); |
|
|
|
|
|
|
|
|
|
// 2. only sumple case (all features used)
|
|
|
|
|
int nfeatures = pool->size(); |
|
|
|
|
cv::Mat varIdx(1, nfeatures, CV_32SC1); |
|
|
|
|
int* ptr = varIdx.ptr<int>(0); |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < nfeatures; ++x) |
|
|
|
|
ptr[x] = x; |
|
|
|
|
|
|
|
|
|
// 3. only sumple case (all samples used)
|
|
|
|
|
int nsamples = npositives + nnegatives; |
|
|
|
|
cv::Mat sampleIdx(1, nsamples, CV_32SC1); |
|
|
|
|
ptr = sampleIdx.ptr<int>(0); |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < nsamples; ++x) |
|
|
|
|
ptr[x] = x; |
|
|
|
|
|
|
|
|
|
// 4. ICF has an orderable responce.
|
|
|
|
|
cv::Mat varType(1, nfeatures + 1, CV_8UC1); |
|
|
|
|
uchar* uptr = varType.ptr<uchar>(0); |
|
|
|
|
for (int x = 0; x < nfeatures; ++x) |
|
|
|
|
uptr[x] = CV_VAR_ORDERED; |
|
|
|
|
uptr[nfeatures] = CV_VAR_CATEGORICAL; |
|
|
|
|
|
|
|
|
|
trainData.create(nfeatures, nsamples, CV_32FC1); |
|
|
|
|
for (int fi = 0; fi < nfeatures; ++fi) |
|
|
|
|
{ |
|
|
|
|
float* dptr = trainData.ptr<float>(fi); |
|
|
|
|
for (int si = 0; si < nsamples; ++si) |
|
|
|
|
{ |
|
|
|
|
dptr[si] = pool->apply(fi, si, integrals); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat missingMask; |
|
|
|
|
|
|
|
|
|
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask); |
|
|
|
|
if (!ok) |
|
|
|
|
std::cout << "ERROR: tree can not be trained " << std::endl; |
|
|
|
|
return ok; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float cv::Octave::predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const |
|
|
|
|
{ |
|
|
|
|
CvMat sample = _sample, votes = _votes; |
|
|
|
|
return CvBoost::predict(&sample, 0, (_votes.empty())? 0 : &votes, CV_WHOLE_SEQ, raw_mode, return_sum); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float cv::Octave::predict( const Mat& _sample, const cv::Range range) const |
|
|
|
|
{ |
|
|
|
|
CvMat sample = _sample; |
|
|
|
|
return CvBoost::predict(&sample, 0, 0, range, false, true); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::Octave::write( CvFileStorage* fs, string name) const |
|
|
|
|
{ |
|
|
|
|
CvBoost::write(fs, name.c_str()); |
|
|
|
|
} |
|
|
|
|