|
|
|
@ -24,176 +24,154 @@ using namespace cv::dnn::cuda4dnn::csl::device; |
|
|
|
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
|
|
|
|
|
namespace raw { |
|
|
|
|
template <class T> |
|
|
|
|
__global__ void sigmoid_strided(Span<T> output, View<T> input, size_type n, size_type stride, size_type offset) { |
|
|
|
|
/* - the input is divided into equal blocks strided by `stride` |
|
|
|
|
* - we must apply sigmoid to a continuous range of `n` values starting from `offset` in every block |
|
|
|
|
*/ |
|
|
|
|
for (auto i : grid_stride_range(n * output.size() / stride)) { |
|
|
|
|
auto block_idx = i / n; |
|
|
|
|
auto index = block_idx * stride + offset + (i % n); |
|
|
|
|
|
|
|
|
|
using device::sigmoid; |
|
|
|
|
output[index] = sigmoid(input[index]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
__global__ void softmax_strided(Span<T> output, View<T> input, size_type n, size_type stride, size_type offset_) { |
|
|
|
|
for (auto idx : grid_stride_range(output.size() / stride)) { |
|
|
|
|
index_type offset = idx * stride + offset_; |
|
|
|
|
|
|
|
|
|
auto largest = numeric_limits<T>::lowest(); |
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
|
using device::max; |
|
|
|
|
largest = max(largest, output[offset + i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
auto sum = T(0); |
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
|
using device::exp; |
|
|
|
|
auto temp = exp(output[offset + i] - largest); |
|
|
|
|
sum += temp; |
|
|
|
|
output[offset + i] = temp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
|
output[offset + i] /= sum; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
__global__ void region_finalize(Span<T> output, View<T> input, View<T> bias, |
|
|
|
|
T object_prob_cutoff, T class_prob_cutoff, |
|
|
|
|
size_type height_norm, size_type width_norm, |
|
|
|
|
__global__ void region_box( |
|
|
|
|
Span<T> output, View<T> input, View<T> bias, |
|
|
|
|
size_type boxes_per_cell, size_type box_size, |
|
|
|
|
size_type rows, size_type cols, |
|
|
|
|
size_type boxes_per_cell, |
|
|
|
|
size_type box_size, |
|
|
|
|
size_type classes) |
|
|
|
|
size_type height_norm, size_type width_norm, |
|
|
|
|
T object_prob_cutoff) |
|
|
|
|
{ |
|
|
|
|
using vector2_type = get_vector_type_t<T, 2>; |
|
|
|
|
auto bias_vPtr = vector2_type::get_pointer(bias.data()); |
|
|
|
|
|
|
|
|
|
for (auto box_index : grid_stride_range(output.size() / box_size)) { |
|
|
|
|
auto box_of_the_cell = box_index % boxes_per_cell; /* box number within a cell */ |
|
|
|
|
auto box_offset = box_index * box_size; |
|
|
|
|
const auto box_of_the_cell = box_index % boxes_per_cell; /* box number within a cell */ |
|
|
|
|
const auto box_offset = box_index * box_size; |
|
|
|
|
|
|
|
|
|
auto batch_inner_size = rows * cols * boxes_per_cell; |
|
|
|
|
auto row_inner_size = cols * boxes_per_cell; |
|
|
|
|
auto col_inner_size = boxes_per_cell; |
|
|
|
|
const auto batch_inner_size = rows * cols * boxes_per_cell; |
|
|
|
|
const auto row_inner_size = cols * boxes_per_cell; |
|
|
|
|
const auto col_inner_size = boxes_per_cell; |
|
|
|
|
|
|
|
|
|
auto y = (box_index % batch_inner_size) / row_inner_size; |
|
|
|
|
auto x = (box_index % row_inner_size) / col_inner_size; |
|
|
|
|
const auto y = (box_index % batch_inner_size) / row_inner_size; |
|
|
|
|
const auto x = (box_index % row_inner_size) / col_inner_size; |
|
|
|
|
|
|
|
|
|
using device::sigmoid; |
|
|
|
|
using device::exp; |
|
|
|
|
output[box_offset + 0] = (T(x) + sigmoid(input[box_offset + 0])) / T(cols); |
|
|
|
|
output[box_offset + 1] = (T(y) + sigmoid(input[box_offset + 1])) / T(rows); |
|
|
|
|
output[box_offset + 2] = exp(input[box_offset + 2]) * bias[2 * box_of_the_cell + 0] / T(width_norm); |
|
|
|
|
output[box_offset + 3] = exp(input[box_offset + 3]) * bias[2 * box_of_the_cell + 1] / T(height_norm); |
|
|
|
|
|
|
|
|
|
vector2_type bias_xy; |
|
|
|
|
v_load(bias_xy, bias_vPtr[box_of_the_cell]); |
|
|
|
|
|
|
|
|
|
using device::exp; |
|
|
|
|
output[box_offset + 2] = exp(input[box_offset + 2]) * bias_xy.data[0] / T(width_norm); |
|
|
|
|
output[box_offset + 3] = exp(input[box_offset + 3]) * bias_xy.data[1] / T(height_norm); |
|
|
|
|
|
|
|
|
|
/* squash objectness score into a probability */ |
|
|
|
|
using device::sigmoid; |
|
|
|
|
T objectness_prob = sigmoid(output[box_offset + 4]); |
|
|
|
|
output[box_offset + 4] = objectness_prob; |
|
|
|
|
T objectness_prob = sigmoid(input[box_offset + 4]); |
|
|
|
|
|
|
|
|
|
/* ignore prediction if the objectness probability is less than the cutoff */ |
|
|
|
|
if (objectness_prob < object_prob_cutoff) |
|
|
|
|
objectness_prob = 0; |
|
|
|
|
|
|
|
|
|
/* the class probabilities we have currently are conditional class probabilities |
|
|
|
|
output[box_offset + 4] = objectness_prob; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
__global__ void region_sigmoid_class_score(Span<T> output, View<T> input, T class_prob_cutoff, size_type box_size) |
|
|
|
|
{ |
|
|
|
|
for (auto idx : grid_stride_range(output.size())) { |
|
|
|
|
const index_type box_no = idx / box_size; |
|
|
|
|
const index_type start_of_box = box_no * box_size; |
|
|
|
|
const index_type box_offset = idx % box_size; |
|
|
|
|
|
|
|
|
|
if (box_offset < 5) { |
|
|
|
|
/* continue as we have already processed these in region_box */ |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
auto objectness_prob = output[start_of_box + 4]; |
|
|
|
|
|
|
|
|
|
/* the class probabilities we currently have are conditional class probabilities |
|
|
|
|
* given the object |
|
|
|
|
* |
|
|
|
|
* to obtain the actual class probability, we multiply the conditional probability |
|
|
|
|
* with the object probability |
|
|
|
|
*/ |
|
|
|
|
const index_type class_begin = box_offset + 5; /* 4 box coordinates, 1 obj prob, class probs... */ |
|
|
|
|
const index_type class_end = class_begin + classes; |
|
|
|
|
index_type offset = class_begin; |
|
|
|
|
auto actual_class_prob = objectness_prob * sigmoid(input[idx]); |
|
|
|
|
if (actual_class_prob <= class_prob_cutoff) |
|
|
|
|
actual_class_prob = T(0); |
|
|
|
|
output[idx] = actual_class_prob; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
using vector_type = get_vector_type_t<T, 4>; |
|
|
|
|
template <class T> |
|
|
|
|
__global__ void region_softmax_class_score(Span<T> output, View<T> input, T class_prob_cutoff, size_type box_size) { |
|
|
|
|
for (auto box_no : grid_stride_range(output.size() / box_size)) { |
|
|
|
|
const index_type start_of_box = box_no * box_size; |
|
|
|
|
const index_type start_idx = start_of_box + 5; |
|
|
|
|
const index_type end_idx = start_of_box + box_size; |
|
|
|
|
|
|
|
|
|
/* process each class independently until the offset is aligned to an n-element boundary */ |
|
|
|
|
while (offset % vector_type::size() != 0 && offset < class_end) { |
|
|
|
|
T actual_class_prob = objectness_prob * output[offset]; |
|
|
|
|
if (actual_class_prob <= class_prob_cutoff) |
|
|
|
|
actual_class_prob = T(0); |
|
|
|
|
output[offset] = actual_class_prob; |
|
|
|
|
offset++; |
|
|
|
|
auto largest = numeric_limits<T>::lowest(); |
|
|
|
|
for (int idx = start_idx; idx < end_idx; idx++) { |
|
|
|
|
using device::max; |
|
|
|
|
largest = max(largest, input[idx]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
auto output_vPtr = vector_type::get_pointer(output.data() + offset); |
|
|
|
|
auto input_vPtr = vector_type::get_pointer(input.data() + offset); |
|
|
|
|
for (int i = 0; (offset + vector_type::size()) < class_end; i++) { |
|
|
|
|
vector_type vec; |
|
|
|
|
v_load(vec, output_vPtr[i]); |
|
|
|
|
for (int j = 0; j < vector_type::size(); j++) { |
|
|
|
|
T actual_class_prob = objectness_prob * vec.data[j]; |
|
|
|
|
if (actual_class_prob <= class_prob_cutoff) |
|
|
|
|
actual_class_prob = T(0); |
|
|
|
|
vec.data[j] = actual_class_prob; |
|
|
|
|
} |
|
|
|
|
v_store(output_vPtr[i], vec); |
|
|
|
|
offset += vector_type::size(); |
|
|
|
|
auto sum = T(0); |
|
|
|
|
for (int idx = start_idx; idx < end_idx; idx++) { |
|
|
|
|
using device::exp; |
|
|
|
|
auto temp = exp(input[idx] - largest); |
|
|
|
|
sum += temp; |
|
|
|
|
output[idx] = temp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* process the remaining classes */ |
|
|
|
|
while (offset < class_end) { |
|
|
|
|
T actual_class_prob = objectness_prob * output[offset]; |
|
|
|
|
for (int idx = start_idx; idx < end_idx; idx++) { |
|
|
|
|
auto softmax_score = output[idx] / sum; |
|
|
|
|
|
|
|
|
|
/* the class probabilities we currently have are conditional class probabilities |
|
|
|
|
* given the object |
|
|
|
|
* |
|
|
|
|
* to obtain the actual class probability, we multiply the conditional probability |
|
|
|
|
* with the object probability |
|
|
|
|
*/ |
|
|
|
|
auto objectness_prob = output[start_of_box + 4]; |
|
|
|
|
auto actual_class_prob = objectness_prob * softmax_score; |
|
|
|
|
if (actual_class_prob <= class_prob_cutoff) |
|
|
|
|
actual_class_prob = T(0); |
|
|
|
|
output[offset] = actual_class_prob; |
|
|
|
|
offset++; |
|
|
|
|
output[idx] = actual_class_prob; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
void sigmoid_strided(const Stream& stream, Span<T> output, View<T> input, std::size_t n, std::size_t stride, std::size_t offset) { |
|
|
|
|
CV_Assert(output.size() % stride == 0); |
|
|
|
|
|
|
|
|
|
auto kernel = raw::sigmoid_strided<T>; |
|
|
|
|
auto policy = make_policy(kernel, n * output.size() / stride, 0, stream); |
|
|
|
|
launch_kernel(kernel, policy, output, input, n, stride, offset); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template void sigmoid_strided(const Stream&, Span<__half>, View<__half>, std::size_t, std::size_t, std::size_t); |
|
|
|
|
template void sigmoid_strided(const Stream&, Span<float>, View<float>, std::size_t, std::size_t, std::size_t); |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
void softmax_strided(const Stream& stream, Span<T> output, View<T> input, std::size_t n, std::size_t stride, std::size_t offset) { |
|
|
|
|
CV_Assert(output.size() % stride == 0); |
|
|
|
|
|
|
|
|
|
auto kernel = raw::softmax_strided<T>; |
|
|
|
|
auto policy = make_policy(kernel, output.size() / stride, 0, stream); |
|
|
|
|
launch_kernel(kernel, policy, output, input, n, stride, offset); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template void softmax_strided(const Stream&, Span<__half>, View<__half>, std::size_t, std::size_t, std::size_t); |
|
|
|
|
template void softmax_strided(const Stream&, Span<float>, View<float>, std::size_t, std::size_t, std::size_t); |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
void region_finalize(const Stream& stream, Span<T> output, View<T> input, View<T> bias, |
|
|
|
|
void region(const Stream& stream, Span<T> output, View<T> input, View<T> bias, |
|
|
|
|
T object_prob_cutoff, T class_prob_cutoff, |
|
|
|
|
std::size_t height_norm, std::size_t width_norm, |
|
|
|
|
std::size_t boxes_per_cell, std::size_t box_size, |
|
|
|
|
std::size_t rows, std::size_t cols, |
|
|
|
|
std::size_t boxes_per_cell, |
|
|
|
|
std::size_t box_size, |
|
|
|
|
std::size_t classes) |
|
|
|
|
std::size_t height_norm, std::size_t width_norm, |
|
|
|
|
bool if_true_sigmoid_else_softmax /* true = sigmoid, false = softmax */) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(output.size() == input.size()); |
|
|
|
|
CV_Assert(output.size() % box_size == 0); |
|
|
|
|
|
|
|
|
|
auto kernel = raw::region_finalize<T>; |
|
|
|
|
auto policy = make_policy(kernel, output.size() / box_size, 0, stream); |
|
|
|
|
launch_kernel(kernel, policy, output, input, bias, |
|
|
|
|
object_prob_cutoff, class_prob_cutoff, |
|
|
|
|
height_norm, width_norm, |
|
|
|
|
rows, cols, boxes_per_cell, box_size, classes); |
|
|
|
|
CV_Assert(is_fully_aligned(bias, 2)); |
|
|
|
|
|
|
|
|
|
auto box_kernel = raw::region_box<T>; |
|
|
|
|
auto box_policy = make_policy(box_kernel, output.size() / box_size, 0, stream); |
|
|
|
|
launch_kernel(box_kernel, box_policy, |
|
|
|
|
output, input, bias, boxes_per_cell, box_size, |
|
|
|
|
rows, cols, height_norm, width_norm, |
|
|
|
|
object_prob_cutoff); |
|
|
|
|
|
|
|
|
|
if (if_true_sigmoid_else_softmax) { |
|
|
|
|
auto kernel_score = raw::region_sigmoid_class_score<T>; |
|
|
|
|
auto policy_score = make_policy(kernel_score, output.size(), 0, stream); |
|
|
|
|
launch_kernel(kernel_score, policy_score, output, input, class_prob_cutoff, box_size); |
|
|
|
|
} else { |
|
|
|
|
auto kernel_score = raw::region_softmax_class_score<T>; |
|
|
|
|
auto policy_score = make_policy(kernel_score, output.size(), 0, stream); |
|
|
|
|
launch_kernel(kernel_score, policy_score, output, input, class_prob_cutoff, box_size); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template void region_finalize(const Stream&, Span<__half>, View<__half>, View<__half>, |
|
|
|
|
__half, __half, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t); |
|
|
|
|
template void region(const Stream&, Span<__half>, View<__half>, View<__half>, |
|
|
|
|
__half, __half, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, bool); |
|
|
|
|
|
|
|
|
|
template void region_finalize(const Stream&, Span<float>, View<float>, View<float>, |
|
|
|
|
float, float, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t); |
|
|
|
|
template void region(const Stream&, Span<float>, View<float>, View<float>, |
|
|
|
|
float, float, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, bool); |
|
|
|
|
|
|
|
|
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */ |
|
|
|
|