|
|
|
@ -60,6 +60,9 @@ static void removeOcclusions(const Mat& flow, |
|
|
|
|
Mat& confidence) { |
|
|
|
|
const int rows = flow.rows; |
|
|
|
|
const int cols = flow.cols; |
|
|
|
|
if (!confidence.data) { |
|
|
|
|
confidence = Mat::zeros(rows, cols, CV_32F); |
|
|
|
|
} |
|
|
|
|
for (int r = 0; r < rows; ++r) { |
|
|
|
|
for (int c = 0; c < cols; ++c) { |
|
|
|
|
if (dist(flow.at<Vec2f>(r, c), -flow_inv.at<Vec2f>(r, c)) > occ_thr) { |
|
|
|
@ -96,20 +99,12 @@ static void wc(const Mat& image, Mat& d, int r0, int c0, |
|
|
|
|
exp(d, d); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void dist(const Mat& m1, const Mat& m2, Mat& result) { |
|
|
|
|
const int rows = m1.rows; |
|
|
|
|
const int cols = m1.cols; |
|
|
|
|
for (int r = 0; r < rows; ++r) { |
|
|
|
|
const Vec3b *m1_row = m1.ptr<Vec3b>(r); |
|
|
|
|
const Vec3b *m2_row = m2.ptr<Vec3b>(r); |
|
|
|
|
float* row = result.ptr<float>(r); |
|
|
|
|
for (int c = 0; c < cols; ++c) { |
|
|
|
|
row[c] = dist(m1_row[c], m2_row[c]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const Mat confidence, Mat& dst, int d, float sigma_color, float sigma_space, bool flag=false) { |
|
|
|
|
static void crossBilateralFilter(const Mat& image,
|
|
|
|
|
const Mat& edge_image,
|
|
|
|
|
const Mat confidence,
|
|
|
|
|
Mat& dst, int d,
|
|
|
|
|
float sigma_color, float sigma_space,
|
|
|
|
|
bool flag=false) { |
|
|
|
|
const int rows = image.rows; |
|
|
|
|
const int cols = image.cols; |
|
|
|
|
Mat image_extended, edge_image_extended, confidence_extended; |
|
|
|
@ -121,7 +116,6 @@ static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const |
|
|
|
|
Mat weights(2*d+1, 2*d+1, CV_32F); |
|
|
|
|
Mat weighted_sum(2*d+1, 2*d+1, CV_32F); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vector<Mat> image_extended_channels; |
|
|
|
|
split(image_extended, image_extended_channels); |
|
|
|
|
|
|
|
|
@ -148,31 +142,15 @@ static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void calcOpticalFlowSingleScaleSF(const Mat& prev,
|
|
|
|
|
const Mat& next, |
|
|
|
|
const Mat& mask, |
|
|
|
|
Mat& flow, |
|
|
|
|
Mat& confidence, |
|
|
|
|
int averaging_radius,
|
|
|
|
|
int max_flow, |
|
|
|
|
float sigma_dist, |
|
|
|
|
float sigma_color) { |
|
|
|
|
static void calcConfidence(const Mat& prev,
|
|
|
|
|
const Mat& next, |
|
|
|
|
const Mat& flow, |
|
|
|
|
Mat& confidence, |
|
|
|
|
int max_flow) { |
|
|
|
|
const int rows = prev.rows; |
|
|
|
|
const int cols = prev.cols; |
|
|
|
|
confidence = Mat::zeros(rows, cols, CV_32F); |
|
|
|
|
|
|
|
|
|
Mat diff_storage(averaging_radius*2 + 1, averaging_radius*2 + 1, CV_32F); |
|
|
|
|
Mat w_full_window(averaging_radius*2 + 1, averaging_radius*2 + 1, CV_32F); |
|
|
|
|
Mat wd_full_window(averaging_radius*2 + 1, averaging_radius*2 + 1, CV_32F); |
|
|
|
|
float w_full_window_sum = 1e-9f; |
|
|
|
|
|
|
|
|
|
Mat prev_extended; |
|
|
|
|
copyMakeBorder(prev, prev_extended,
|
|
|
|
|
averaging_radius, averaging_radius, averaging_radius, averaging_radius, |
|
|
|
|
BORDER_DEFAULT); |
|
|
|
|
|
|
|
|
|
wd(wd_full_window, averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_dist); |
|
|
|
|
|
|
|
|
|
for (int r0 = 0; r0 < rows; ++r0) { |
|
|
|
|
for (int c0 = 0; c0 < cols; ++c0) { |
|
|
|
|
Vec2f flow_at_point = flow.at<Vec2f>(r0, c0); |
|
|
|
@ -183,25 +161,16 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev, |
|
|
|
|
if (c0 + v0 < 0) { v0 = -c0; } |
|
|
|
|
if (c0 + v0 >= cols) { v0 = cols - 1 - c0; } |
|
|
|
|
|
|
|
|
|
const int min_row_shift = -min(r0 + u0, max_flow); |
|
|
|
|
const int max_row_shift = min(rows - 1 - (r0 + u0), max_flow); |
|
|
|
|
const int min_col_shift = -min(c0 + v0, max_flow); |
|
|
|
|
const int max_col_shift = min(cols - 1 - (c0 + v0), max_flow); |
|
|
|
|
|
|
|
|
|
float min_cost = FLT_MAX, best_u = (float)u0, best_v = (float)v0; |
|
|
|
|
|
|
|
|
|
if (mask.at<uchar>(r0, c0)) { |
|
|
|
|
wc(prev_extended, w_full_window, r0 + averaging_radius, c0 + averaging_radius, |
|
|
|
|
averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_color); |
|
|
|
|
multiply(w_full_window, wd_full_window, w_full_window); |
|
|
|
|
w_full_window_sum = (float)sum(w_full_window)[0]; |
|
|
|
|
} |
|
|
|
|
const int top_row_shift = -min(r0 + u0, max_flow); |
|
|
|
|
const int bottom_row_shift = min(rows - 1 - (r0 + u0), max_flow); |
|
|
|
|
const int left_col_shift = -min(c0 + v0, max_flow); |
|
|
|
|
const int right_col_shift = min(cols - 1 - (c0 + v0), max_flow); |
|
|
|
|
|
|
|
|
|
bool first_flow_iteration = true; |
|
|
|
|
float sum_e = 0, min_e = 0; |
|
|
|
|
|
|
|
|
|
for (int u = min_row_shift; u <= max_row_shift; ++u) { |
|
|
|
|
for (int v = min_col_shift; v <= max_col_shift; ++v) { |
|
|
|
|
for (int u = top_row_shift; u <= bottom_row_shift; ++u) { |
|
|
|
|
for (int v = left_col_shift; v <= right_col_shift; ++v) { |
|
|
|
|
float e = dist(prev.at<Vec3b>(r0, c0), next.at<Vec3b>(r0 + u0 + u, c0 + v0 + v)); |
|
|
|
|
if (first_flow_iteration) { |
|
|
|
|
sum_e = e; |
|
|
|
@ -211,55 +180,83 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev, |
|
|
|
|
sum_e += e; |
|
|
|
|
min_e = std::min(min_e, e); |
|
|
|
|
} |
|
|
|
|
if (!mask.at<uchar>(r0, c0)) { |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
int windows_square = (bottom_row_shift - top_row_shift + 1) * |
|
|
|
|
(right_col_shift - left_col_shift + 1); |
|
|
|
|
confidence.at<float>(r0, c0) = (windows_square == 0) ? 0 |
|
|
|
|
: sum_e / windows_square - min_e; |
|
|
|
|
CV_Assert(confidence.at<float>(r0, c0) >= 0); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int window_top_shift = min(r0, r0 + u + u0, averaging_radius); |
|
|
|
|
const int window_bottom_shift = min(rows - 1 - r0,
|
|
|
|
|
rows - 1 - (r0 + u + u0),
|
|
|
|
|
averaging_radius); |
|
|
|
|
const int window_left_shift = min(c0, c0 + v + v0, averaging_radius); |
|
|
|
|
const int window_right_shift = min(cols - 1 - c0,
|
|
|
|
|
cols - 1 - (c0 + v + v0),
|
|
|
|
|
averaging_radius); |
|
|
|
|
|
|
|
|
|
const Range prev_row_range(r0 - window_top_shift, r0 + window_bottom_shift + 1); |
|
|
|
|
const Range prev_col_range(c0 - window_left_shift, c0 + window_right_shift + 1); |
|
|
|
|
|
|
|
|
|
const Range next_row_range(r0 + u0 + u - window_top_shift,
|
|
|
|
|
r0 + u0 + u + window_bottom_shift + 1); |
|
|
|
|
const Range next_col_range(c0 + v0 + v - window_left_shift,
|
|
|
|
|
c0 + v0 + v + window_right_shift + 1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat diff2; |
|
|
|
|
Mat w; |
|
|
|
|
float w_sum; |
|
|
|
|
if (window_top_shift == averaging_radius && |
|
|
|
|
window_bottom_shift == averaging_radius && |
|
|
|
|
window_left_shift == averaging_radius && |
|
|
|
|
window_right_shift == averaging_radius) { |
|
|
|
|
w = w_full_window; |
|
|
|
|
w_sum = w_full_window_sum; |
|
|
|
|
diff2 = diff_storage; |
|
|
|
|
dist(prev(prev_row_range, prev_col_range), next(next_row_range, next_col_range), diff2); |
|
|
|
|
} else { |
|
|
|
|
diff2 = diff_storage(Range(averaging_radius - window_top_shift,
|
|
|
|
|
averaging_radius + 1 + window_bottom_shift), |
|
|
|
|
Range(averaging_radius - window_left_shift, |
|
|
|
|
averaging_radius + 1 + window_right_shift)); |
|
|
|
|
|
|
|
|
|
dist(prev(prev_row_range, prev_col_range), next(next_row_range, next_col_range), diff2); |
|
|
|
|
w = w_full_window(Range(averaging_radius - window_top_shift,
|
|
|
|
|
averaging_radius + 1 + window_bottom_shift), |
|
|
|
|
Range(averaging_radius - window_left_shift, |
|
|
|
|
averaging_radius + 1 + window_right_shift)); |
|
|
|
|
w_sum = (float)sum(w)[0]; |
|
|
|
|
static void calcOpticalFlowSingleScaleSF(const Mat& prev_extended, |
|
|
|
|
const Mat& next_extended, |
|
|
|
|
const Mat& mask, |
|
|
|
|
Mat& flow, |
|
|
|
|
int averaging_radius,
|
|
|
|
|
int max_flow, |
|
|
|
|
float sigma_dist, |
|
|
|
|
float sigma_color) { |
|
|
|
|
const int averaging_radius_2 = averaging_radius << 1; |
|
|
|
|
const int rows = prev_extended.rows - averaging_radius_2; |
|
|
|
|
const int cols = prev_extended.cols - averaging_radius_2; |
|
|
|
|
|
|
|
|
|
Mat weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F); |
|
|
|
|
Mat space_weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F); |
|
|
|
|
|
|
|
|
|
wd(space_weight_window, averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_dist); |
|
|
|
|
|
|
|
|
|
for (int r0 = 0; r0 < rows; ++r0) { |
|
|
|
|
for (int c0 = 0; c0 < cols; ++c0) { |
|
|
|
|
if (!mask.at<uchar>(r0, c0)) { |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// TODO: do smth with this creepy staff
|
|
|
|
|
Vec2f flow_at_point = flow.at<Vec2f>(r0, c0); |
|
|
|
|
int u0 = floor(flow_at_point[0] + 0.5); |
|
|
|
|
if (r0 + u0 < 0) { u0 = -r0; } |
|
|
|
|
if (r0 + u0 >= rows) { u0 = rows - 1 - r0; } |
|
|
|
|
int v0 = floor(flow_at_point[1] + 0.5); |
|
|
|
|
if (c0 + v0 < 0) { v0 = -c0; } |
|
|
|
|
if (c0 + v0 >= cols) { v0 = cols - 1 - c0; } |
|
|
|
|
|
|
|
|
|
const int top_row_shift = -min(r0 + u0, max_flow); |
|
|
|
|
const int bottom_row_shift = min(rows - 1 - (r0 + u0), max_flow); |
|
|
|
|
const int left_col_shift = -min(c0 + v0, max_flow); |
|
|
|
|
const int right_col_shift = min(cols - 1 - (c0 + v0), max_flow); |
|
|
|
|
|
|
|
|
|
float min_cost = DBL_MAX, best_u = u0, best_v = v0; |
|
|
|
|
|
|
|
|
|
wc(prev_extended, weight_window, r0 + averaging_radius, c0 + averaging_radius, |
|
|
|
|
averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_color); |
|
|
|
|
multiply(weight_window, space_weight_window, weight_window); |
|
|
|
|
|
|
|
|
|
const int prev_extended_top_window_row = r0; |
|
|
|
|
const int prev_extended_left_window_col = c0; |
|
|
|
|
|
|
|
|
|
for (int u = top_row_shift; u <= bottom_row_shift; ++u) { |
|
|
|
|
const int next_extended_top_window_row = r0 + u0 + u; |
|
|
|
|
for (int v = left_col_shift; v <= right_col_shift; ++v) { |
|
|
|
|
const int next_extended_left_window_col = c0 + v0 + v; |
|
|
|
|
|
|
|
|
|
float cost = 0; |
|
|
|
|
for (int r = 0; r <= averaging_radius_2; ++r) { |
|
|
|
|
const Vec3b *prev_extended_window_row = prev_extended.ptr<Vec3b>(prev_extended_top_window_row + r); |
|
|
|
|
const Vec3b *next_extended_window_row = next_extended.ptr<Vec3b>(next_extended_top_window_row + r); |
|
|
|
|
const float* weight_window_row = weight_window.ptr<float>(r); |
|
|
|
|
for (int c = 0; c <= averaging_radius_2; ++c) { |
|
|
|
|
cost += weight_window_row[c] *
|
|
|
|
|
dist(prev_extended_window_row[prev_extended_left_window_col + c],
|
|
|
|
|
next_extended_window_row[next_extended_left_window_col + c]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
multiply(diff2, w, diff2); |
|
|
|
|
|
|
|
|
|
const float cost = (float)(sum(diff2)[0] / w_sum); |
|
|
|
|
// cost should be divided by sum(weight_window), but because
|
|
|
|
|
// we interested only in min(cost) and sum(weight_window) is constant
|
|
|
|
|
// for every point - we remove it
|
|
|
|
|
|
|
|
|
|
if (cost < min_cost) { |
|
|
|
|
min_cost = cost; |
|
|
|
|
best_u = (float)(u + u0); |
|
|
|
@ -267,14 +264,7 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev, |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
int windows_square = (max_row_shift - min_row_shift + 1) * |
|
|
|
|
(max_col_shift - min_col_shift + 1); |
|
|
|
|
confidence.at<float>(r0, c0) = (windows_square == 0) ? 0 |
|
|
|
|
: sum_e / windows_square - min_e; |
|
|
|
|
CV_Assert(confidence.at<float>(r0, c0) >= 0); // TODO: remove it after testing
|
|
|
|
|
if (mask.at<uchar>(r0, c0)) { |
|
|
|
|
flow.at<Vec2f>(r0, c0) = Vec2f(best_u, best_v); |
|
|
|
|
} |
|
|
|
|
flow.at<Vec2f>(r0, c0) = Vec2f(best_u, best_v); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -319,7 +309,7 @@ static Mat calcIrregularityMat(const Mat& flow, int radius) { |
|
|
|
|
|
|
|
|
|
static void selectPointsToRecalcFlow(const Mat& flow,
|
|
|
|
|
int irregularity_metric_radius, |
|
|
|
|
int speed_up_thr, |
|
|
|
|
float speed_up_thr, |
|
|
|
|
int curr_rows, |
|
|
|
|
int curr_cols, |
|
|
|
|
const Mat& prev_speed_up, |
|
|
|
@ -474,22 +464,22 @@ static void buildPyramidWithResizeMethod(Mat& src, |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void calcOpticalFlowSF(Mat& from,
|
|
|
|
|
Mat& to,
|
|
|
|
|
Mat& resulted_flow, |
|
|
|
|
int layers, |
|
|
|
|
int averaging_block_size,
|
|
|
|
|
int max_flow, |
|
|
|
|
double sigma_dist, |
|
|
|
|
double sigma_color, |
|
|
|
|
int postprocess_window,
|
|
|
|
|
double sigma_dist_fix,
|
|
|
|
|
double sigma_color_fix, |
|
|
|
|
double occ_thr, |
|
|
|
|
int upscale_averaging_radius, |
|
|
|
|
double upscale_sigma_dist, |
|
|
|
|
double upscale_sigma_color, |
|
|
|
|
double speed_up_thr) { |
|
|
|
|
CV_EXPORTS_W void calcOpticalFlowSF(Mat& from,
|
|
|
|
|
Mat& to,
|
|
|
|
|
Mat& resulted_flow, |
|
|
|
|
int layers, |
|
|
|
|
int averaging_radius,
|
|
|
|
|
int max_flow, |
|
|
|
|
double sigma_dist, |
|
|
|
|
double sigma_color, |
|
|
|
|
int postprocess_window,
|
|
|
|
|
double sigma_dist_fix,
|
|
|
|
|
double sigma_color_fix, |
|
|
|
|
double occ_thr, |
|
|
|
|
int upscale_averaging_radius, |
|
|
|
|
double upscale_sigma_dist, |
|
|
|
|
double upscale_sigma_color, |
|
|
|
|
double speed_up_thr) { |
|
|
|
|
vector<Mat> pyr_from_images; |
|
|
|
|
vector<Mat> pyr_to_images; |
|
|
|
|
|
|
|
|
@ -498,34 +488,43 @@ void calcOpticalFlowSF(Mat& from, |
|
|
|
|
|
|
|
|
|
CV_Assert((int)pyr_from_images.size() == layers && (int)pyr_to_images.size() == layers); |
|
|
|
|
|
|
|
|
|
Mat first_from_image = pyr_from_images[layers - 1]; |
|
|
|
|
Mat first_to_image = pyr_to_images[layers - 1]; |
|
|
|
|
Mat curr_from, curr_to, prev_from, prev_to; |
|
|
|
|
Mat curr_from_extended, curr_to_extended; |
|
|
|
|
|
|
|
|
|
curr_from = pyr_from_images[layers - 1]; |
|
|
|
|
curr_to = pyr_to_images[layers - 1]; |
|
|
|
|
|
|
|
|
|
copyMakeBorder(curr_from, curr_from_extended,
|
|
|
|
|
averaging_radius, averaging_radius, averaging_radius, averaging_radius, |
|
|
|
|
BORDER_DEFAULT); |
|
|
|
|
copyMakeBorder(curr_to, curr_to_extended,
|
|
|
|
|
averaging_radius, averaging_radius, averaging_radius, averaging_radius, |
|
|
|
|
BORDER_DEFAULT); |
|
|
|
|
|
|
|
|
|
Mat mask = Mat::ones(first_from_image.rows, first_from_image.cols, CV_8U); |
|
|
|
|
Mat mask_inv = Mat::ones(first_from_image.rows, first_from_image.cols, CV_8U); |
|
|
|
|
Mat mask = Mat::ones(curr_from.size(), CV_8U); |
|
|
|
|
Mat mask_inv = Mat::ones(curr_from.size(), CV_8U); |
|
|
|
|
|
|
|
|
|
Mat flow(first_from_image.rows, first_from_image.cols, CV_32FC2); |
|
|
|
|
Mat flow_inv(first_to_image.rows, first_to_image.cols, CV_32FC2); |
|
|
|
|
Mat flow(curr_from.size(), CV_32FC2); |
|
|
|
|
Mat flow_inv(curr_to.size(), CV_32FC2); |
|
|
|
|
|
|
|
|
|
Mat confidence; |
|
|
|
|
Mat confidence_inv; |
|
|
|
|
|
|
|
|
|
calcOpticalFlowSingleScaleSF(first_from_image,
|
|
|
|
|
first_to_image,
|
|
|
|
|
|
|
|
|
|
calcOpticalFlowSingleScaleSF(curr_from_extended, |
|
|
|
|
curr_to_extended, |
|
|
|
|
mask, |
|
|
|
|
flow, |
|
|
|
|
confidence, |
|
|
|
|
averaging_block_size,
|
|
|
|
|
averaging_radius,
|
|
|
|
|
max_flow,
|
|
|
|
|
(float)sigma_dist,
|
|
|
|
|
(float)sigma_color); |
|
|
|
|
|
|
|
|
|
calcOpticalFlowSingleScaleSF(first_to_image,
|
|
|
|
|
first_from_image,
|
|
|
|
|
calcOpticalFlowSingleScaleSF(curr_to_extended, |
|
|
|
|
curr_from_extended, |
|
|
|
|
mask_inv, |
|
|
|
|
flow_inv, |
|
|
|
|
confidence_inv, |
|
|
|
|
averaging_block_size,
|
|
|
|
|
averaging_radius,
|
|
|
|
|
max_flow,
|
|
|
|
|
(float)sigma_dist,
|
|
|
|
|
(float)sigma_color); |
|
|
|
@ -540,14 +539,21 @@ void calcOpticalFlowSF(Mat& from, |
|
|
|
|
(float)occ_thr, |
|
|
|
|
confidence_inv); |
|
|
|
|
|
|
|
|
|
Mat speed_up = Mat::zeros(first_from_image.rows, first_from_image.cols, CV_8U); |
|
|
|
|
Mat speed_up_inv = Mat::zeros(first_from_image.rows, first_from_image.cols, CV_8U); |
|
|
|
|
Mat speed_up = Mat::zeros(curr_from.size(), CV_8U); |
|
|
|
|
Mat speed_up_inv = Mat::zeros(curr_from.size(), CV_8U); |
|
|
|
|
|
|
|
|
|
for (int curr_layer = layers - 2; curr_layer >= 0; --curr_layer) { |
|
|
|
|
const Mat curr_from = pyr_from_images[curr_layer]; |
|
|
|
|
const Mat curr_to = pyr_to_images[curr_layer]; |
|
|
|
|
const Mat prev_from = pyr_from_images[curr_layer + 1]; |
|
|
|
|
const Mat prev_to = pyr_to_images[curr_layer + 1]; |
|
|
|
|
curr_from = pyr_from_images[curr_layer]; |
|
|
|
|
curr_to = pyr_to_images[curr_layer]; |
|
|
|
|
prev_from = pyr_from_images[curr_layer + 1]; |
|
|
|
|
prev_to = pyr_to_images[curr_layer + 1]; |
|
|
|
|
|
|
|
|
|
copyMakeBorder(curr_from, curr_from_extended,
|
|
|
|
|
averaging_radius, averaging_radius, averaging_radius, averaging_radius, |
|
|
|
|
BORDER_DEFAULT); |
|
|
|
|
copyMakeBorder(curr_to, curr_to_extended, |
|
|
|
|
averaging_radius, averaging_radius, averaging_radius, averaging_radius, |
|
|
|
|
BORDER_DEFAULT); |
|
|
|
|
|
|
|
|
|
const int curr_rows = curr_from.rows; |
|
|
|
|
const int curr_cols = curr_from.cols; |
|
|
|
@ -555,8 +561,8 @@ void calcOpticalFlowSF(Mat& from, |
|
|
|
|
Mat new_speed_up, new_speed_up_inv; |
|
|
|
|
|
|
|
|
|
selectPointsToRecalcFlow(flow, |
|
|
|
|
averaging_block_size, |
|
|
|
|
(int)speed_up_thr, |
|
|
|
|
averaging_radius, |
|
|
|
|
speed_up_thr, |
|
|
|
|
curr_rows, |
|
|
|
|
curr_cols, |
|
|
|
|
speed_up, |
|
|
|
@ -564,8 +570,8 @@ void calcOpticalFlowSF(Mat& from, |
|
|
|
|
mask); |
|
|
|
|
|
|
|
|
|
selectPointsToRecalcFlow(flow_inv, |
|
|
|
|
averaging_block_size, |
|
|
|
|
(int)speed_up_thr, |
|
|
|
|
averaging_radius, |
|
|
|
|
speed_up_thr, |
|
|
|
|
curr_rows, |
|
|
|
|
curr_cols, |
|
|
|
|
speed_up_inv, |
|
|
|
@ -593,22 +599,22 @@ void calcOpticalFlowSF(Mat& from, |
|
|
|
|
(float)upscale_sigma_dist, |
|
|
|
|
(float)upscale_sigma_color); |
|
|
|
|
|
|
|
|
|
calcOpticalFlowSingleScaleSF(curr_from,
|
|
|
|
|
curr_to,
|
|
|
|
|
calcConfidence(curr_from, curr_to, flow, confidence, max_flow); |
|
|
|
|
calcOpticalFlowSingleScaleSF(curr_from_extended, |
|
|
|
|
curr_to_extended, |
|
|
|
|
mask, |
|
|
|
|
flow, |
|
|
|
|
confidence, |
|
|
|
|
averaging_block_size,
|
|
|
|
|
averaging_radius,
|
|
|
|
|
max_flow,
|
|
|
|
|
(float)sigma_dist,
|
|
|
|
|
(float)sigma_color); |
|
|
|
|
|
|
|
|
|
calcOpticalFlowSingleScaleSF(curr_to, |
|
|
|
|
curr_from,
|
|
|
|
|
calcConfidence(curr_to, curr_from, flow_inv, confidence_inv, max_flow); |
|
|
|
|
calcOpticalFlowSingleScaleSF(curr_to_extended, |
|
|
|
|
curr_from_extended, |
|
|
|
|
mask_inv, |
|
|
|
|
flow_inv, |
|
|
|
|
confidence_inv, |
|
|
|
|
averaging_block_size,
|
|
|
|
|
averaging_radius,
|
|
|
|
|
max_flow,
|
|
|
|
|
(float)sigma_dist,
|
|
|
|
|
(float)sigma_color); |
|
|
|
@ -616,11 +622,12 @@ void calcOpticalFlowSF(Mat& from, |
|
|
|
|
extrapolateFlow(flow, speed_up); |
|
|
|
|
extrapolateFlow(flow_inv, speed_up_inv); |
|
|
|
|
|
|
|
|
|
//TODO: should we remove occlusions for the last stage?
|
|
|
|
|
removeOcclusions(flow, flow_inv, (float)occ_thr, confidence); |
|
|
|
|
removeOcclusions(flow_inv, flow, (float)occ_thr, confidence_inv); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
crossBilateralFilter(flow, pyr_from_images[0], confidence, flow,
|
|
|
|
|
crossBilateralFilter(flow, curr_from, confidence, flow,
|
|
|
|
|
postprocess_window, (float)sigma_color_fix, (float)sigma_dist_fix); |
|
|
|
|
|
|
|
|
|
GaussianBlur(flow, flow, Size(3, 3), 5); |
|
|
|
|