Update documentation

pull/10512/head
Suleyman TURKMEN 7 years ago
parent 71f4281080
commit dcd4f8f5db
  1. 123
      modules/core/include/opencv2/core.hpp
  2. 80
      modules/core/include/opencv2/core/types.hpp
  3. 43
      modules/imgcodecs/include/opencv2/imgcodecs.hpp
  4. 479
      modules/imgproc/include/opencv2/imgproc.hpp
  5. 12
      samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
  6. 18
      samples/cpp/tutorial_code/snippets/core_reduce.cpp
  7. 53
      samples/cpp/tutorial_code/snippets/core_various.cpp
  8. 45
      samples/cpp/tutorial_code/snippets/imgcodecs_imwrite.cpp

@ -140,7 +140,7 @@ public:
By default the function prints information about the error to stderr,
then it either stops if cv::setBreakOnError() had been called before or raises the exception.
It is possible to alternate error processing by using cv::redirectError().
It is possible to alternate error processing by using #redirectError().
@param exc the exception raisen.
@deprecated drop this version
*/
@ -175,7 +175,7 @@ enum CovarFlags {
/**The output covariance matrix is calculated as:
\f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f]
covar will be a square matrix of the same size as the total number of elements in each input
vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/
vector. One and only one of #COVAR_SCRAMBLED and #COVAR_NORMAL must be specified.*/
COVAR_NORMAL = 1,
/** If the flag is specified, the function does not calculate mean from
the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
@ -266,8 +266,8 @@ Normally, the function is not called directly. It is used inside filtering funct
copyMakeBorder.
@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
@param len Length of the array along the corresponding axis.
@param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
@param borderType Border type, one of the #BorderTypes, except for #BORDER_TRANSPARENT and
#BORDER_ISOLATED . When borderType==#BORDER_CONSTANT , the function always returns -1, regardless
of p and len.
@sa copyMakeBorder
@ -304,7 +304,7 @@ function does not copy src itself but simply constructs the border, for example:
@endcode
@note When the source image is a part (ROI) of a bigger image, the function will try to use the
pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
if src was not a ROI, use borderType | BORDER_ISOLATED.
if src was not a ROI, use borderType | #BORDER_ISOLATED.
@param src Source image.
@param dst Destination image of the same type as src and the size Size(src.cols+left+right,
@ -642,7 +642,7 @@ CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stdde
/** @brief Calculates the absolute norm of an array.
This version of cv::norm calculates the absolute norm of src1. The type of norm to calculate is specified using cv::NormTypes.
This version of #norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
@ -664,7 +664,7 @@ It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty}
When the mask parameter is specified and it is not empty, the norm is
If normType is not specified, NORM_L2 is used.
If normType is not specified, #NORM_L2 is used.
calculated only over the region specified by the mask.
Multi-channel input arrays are treated as single-channel arrays, that is,
@ -673,7 +673,7 @@ the results for all channels are combined.
Hamming norms can only be calculated with CV_8U depth arrays.
@param src1 first input array.
@param normType type of the norm (see cv::NormTypes).
@param normType type of the norm (see #NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
*/
CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
@ -682,18 +682,18 @@ CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mas
This version of cv::norm calculates the absolute difference norm
or the relative difference norm of arrays src1 and src2.
The type of norm to calculate is specified using cv::NormTypes.
The type of norm to calculate is specified using #NormTypes.
@param src1 first input array.
@param src2 second input array of the same size and the same type as src1.
@param normType type of the norm (cv::NormTypes).
@param normType type of the norm (see #NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
*/
CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
int normType = NORM_L2, InputArray mask = noArray());
/** @overload
@param src first input array.
@param normType type of the norm (see cv::NormTypes).
@param normType type of the norm (see #NormTypes).
*/
CV_EXPORTS double norm( const SparseMat& src, int normType );
@ -859,11 +859,11 @@ CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
/** @brief Reduces a matrix to a vector.
The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
The function #reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one.
In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
raster image. In case of #REDUCE_MAX and #REDUCE_MIN , the output image should have the same type as the source one.
In case of #REDUCE_SUM and #REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
And multi-channel arrays are also supported in these two reduction modes.
The following code demonstrates its usage for a single channel matrix.
@ -876,7 +876,7 @@ And the following code demonstrates its usage for a two-channel matrix.
@param dst output vector. Its size and type is defined by dim and dtype parameters.
@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
a single row. 1 means that the matrix is reduced to a single column.
@param rtype reduction operation that could be one of cv::ReduceTypes
@param rtype reduction operation that could be one of #ReduceTypes
@param dtype when negative, the output vector will have the same type as the input matrix,
otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
@sa repeat
@ -1802,15 +1802,15 @@ The function cv::invert inverts the matrix src and stores the result in dst
the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
minimal, where I is an identity matrix.
In case of the DECOMP_LU method, the function returns non-zero value if
In case of the #DECOMP_LU method, the function returns non-zero value if
the inverse has been successfully calculated and 0 if src is singular.
In case of the DECOMP_SVD method, the function returns the inverse
In case of the #DECOMP_SVD method, the function returns the inverse
condition number of src (the ratio of the smallest singular value to the
largest singular value) and 0 if src is singular. The SVD method
calculates a pseudo-inverse matrix if src is singular.
Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
Similarly to #DECOMP_LU, the method #DECOMP_CHOLESKY works only with
non-singular square matrices that should also be symmetrical and
positively defined. In this case, the function stores the inverted
matrix in dst and returns non-zero. Otherwise, it returns 0.
@ -1826,10 +1826,10 @@ CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_L
The function cv::solve solves a linear system or least-squares problem (the
latter is possible with SVD or QR methods, or by specifying the flag
DECOMP_NORMAL ):
#DECOMP_NORMAL ):
\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
If #DECOMP_LU or #DECOMP_CHOLESKY method is used, the function returns 1
if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
it returns 0. In the latter case, dst is not valid. Other methods find a
pseudo-solution in case of a singular left-hand side part.
@ -1841,7 +1841,7 @@ will not do the work. Use SVD::solveZ instead.
@param src1 input matrix on the left-hand side of the system.
@param src2 input matrix on the right-hand side of the system.
@param dst output solution.
@param flags solution (matrix inversion) method (cv::DecompTypes)
@param flags solution (matrix inversion) method (#DecompTypes)
@sa invert, SVD, eigen
*/
CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
@ -1857,7 +1857,7 @@ proper comparison predicate.
@param src input single-channel array.
@param dst output array of the same size and type as src.
@param flags operation flags, a combination of cv::SortFlags
@param flags operation flags, a combination of #SortFlags
@sa sortIdx, randShuffle
*/
CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
@ -1953,7 +1953,7 @@ the set of input vectors.
@param nsamples number of samples
@param covar output covariance matrix of the type ctype and square size.
@param mean input or output (depending on the flags) array as the average value of the input vectors.
@param flags operation flags as a combination of cv::CovarFlags
@param flags operation flags as a combination of #CovarFlags
@param ctype type of the matrixl; it equals 'CV_64F' by default.
@sa PCA, mulTransposed, Mahalanobis
@todo InputArrayOfArrays
@ -1962,11 +1962,11 @@ CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, M
int flags, int ctype = CV_64F);
/** @overload
@note use cv::COVAR_ROWS or cv::COVAR_COLS flag
@note use #COVAR_ROWS or #COVAR_COLS flag
@param samples samples stored as rows/columns of a single matrix.
@param covar output covariance matrix of the type ctype and square size.
@param mean input or output (depending on the flags) array as the average value of the input vectors.
@param flags operation flags as a combination of cv::CovarFlags
@param flags operation flags as a combination of #CovarFlags
@param ctype type of the matrixl; it equals 'CV_64F' by default.
*/
CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
@ -1999,8 +1999,8 @@ CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
The covariance matrix may be calculated using the #calcCovarMatrix function and then inverted using
the invert function (preferably using the #DECOMP_SVD method, as the most accurate).
@param v1 first 1D input vector.
@param v2 second 1D input vector.
@param icovar inverse covariance matrix.
@ -2030,28 +2030,28 @@ is how 2D *CCS* spectrum looks:
In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
So, the function chooses an operation mode depending on the flags and size of the input array:
- If DFT_ROWS is set or the input array has a single row or single column, the function
performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
- If #DFT_ROWS is set or the input array has a single row or single column, the function
performs a 1D forward or inverse transform of each row of a matrix when #DFT_ROWS is set.
Otherwise, it performs a 2D transform.
- If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
- If the input array is real and #DFT_INVERSE is not set, the function performs a forward 1D or
2D transform:
- When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
- When #DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
input.
- When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
- When #DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
input. In case of 2D transform, it uses the packed format as shown above. In case of a
single 1D transform, it looks like the first row of the matrix above. In case of
multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
multiple 1D transforms (when using the #DFT_ROWS flag), each row of the output matrix
looks like the first row of the matrix above.
- If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
- If the input array is complex and either #DFT_INVERSE or #DFT_REAL_OUTPUT are not set, the
output is a complex array of the same size as input. The function performs a forward or
inverse 1D or 2D transform of the whole input array or each row of the input array
independently, depending on the flags DFT_INVERSE and DFT_ROWS.
- When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
- When #DFT_INVERSE is set and the input array is real, or it is complex but #DFT_REAL_OUTPUT
is set, the output is a real array of the same size as input. The function performs a 1D or 2D
inverse transformation of the whole input array or each individual row, depending on the flags
DFT_INVERSE and DFT_ROWS.
#DFT_INVERSE and #DFT_ROWS.
If DFT_SCALE is set, the scaling is done after the transformation.
If #DFT_SCALE is set, the scaling is done after the transformation.
Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
@ -2117,7 +2117,7 @@ To optimize this sample, consider the following approaches:
- If different tiles in C can be calculated in parallel and, thus, the convolution is done by
parts, the loop can be threaded.
All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
All of the above improvements have been implemented in #matchTemplate and #filter2D . Therefore, by
using them, you can get the performance even better than with the above theoretically optimal
implementation. Though, those two functions actually calculate cross-correlation, not convolution,
so you need to "flip" the second convolution operand B vertically and horizontally using flip .
@ -2130,10 +2130,10 @@ so you need to "flip" the second convolution operand B vertically and horizontal
opencv_source/samples/python/dft.py
@param src input array that could be real or complex.
@param dst output array whose size and type depends on the flags .
@param flags transformation flags, representing a combination of the cv::DftFlags
@param flags transformation flags, representing a combination of the #DftFlags
@param nonzeroRows when the parameter is not zero, the function assumes that only the first
nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
nonzeroRows rows of the input array (#DFT_INVERSE is not set) or only the first nonzeroRows of the
output array (#DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
rows more efficiently and save some time; this technique is very useful for calculating array
cross-correlation or convolution using DFT.
@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
@ -2143,13 +2143,13 @@ CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzer
/** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
@note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
idft(src, dst, flags) is equivalent to dft(src, dst, flags | #DFT_INVERSE) .
@note None of dft and idft scales the result by default. So, you should pass #DFT_SCALE to one of
dft or idft explicitly to make these transforms mutually inverse.
@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
@param src input floating-point real or complex array.
@param dst output array whose size and type depend on the flags.
@param flags operation flags (see dft and cv::DftFlags).
@param flags operation flags (see dft and #DftFlags).
@param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
the convolution sample in dft description.
*/
@ -2174,9 +2174,9 @@ floating-point array:
\f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f]
The function chooses the mode of operation by looking at the flags and size of the input array:
- If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
- If (flags & #DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
is an inverse 1D or 2D transform.
- If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
- If (flags & #DCT_ROWS) != 0 , the function performs a 1D transform of each row.
- If the array is a single column or a single row, the function performs a 1D transform.
- If none of the above is true, the function performs a 2D transform.
@ -2713,7 +2713,7 @@ public:
if you need to solve many linear systems with the same left-hand side
(for example, src ). If all you need is to solve a single system
(possibly with multiple rhs immediately available), simply call solve
add pass DECOMP_SVD there. It does absolutely the same thing.
add pass #DECOMP_SVD there. It does absolutely the same thing.
*/
void backSubst( InputArray rhs, OutputArray dst ) const;
@ -2976,7 +2976,7 @@ function parameter).
after every attempt. The best (minimum) value is chosen and the corresponding labels and the
compactness value are returned by the function. Basically, you can use only the core of the
function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
pass them with the ( flags = #KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
(most-compact) clustering.
*/
CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
@ -3053,31 +3053,8 @@ matching, graph-cut etc.), background subtraction (which can be done using mixtu
models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
etc.).
Here is example of SIFT use in your application via Algorithm interface:
@code
#include "opencv2/opencv.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace cv::xfeatures2d;
Ptr<Feature2D> sift = SIFT::create();
FileStorage fs("sift_params.xml", FileStorage::READ);
if( fs.isOpened() ) // if we have file with parameters, read them
{
sift->read(fs["sift_params"]);
fs.release();
}
else // else modify the parameters and store them; user can later edit the file to use different parameters
{
sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
{
WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
sift->write(fs);
}
}
Mat image = imread("myimage.png", 0), descriptors;
vector<KeyPoint> keypoints;
sift->detectAndCompute(image, noArray(), keypoints, descriptors);
@endcode
Here is example of SimpleBlobDetector use in your application via Algorithm interface:
@snippet snippets/core_various.cpp Algorithm
*/
class CV_EXPORTS_W Algorithm
{

@ -75,7 +75,7 @@ template<typename _Tp> class Complex
{
public:
//! constructors
//! default constructor
Complex();
Complex( _Tp _re, _Tp _im = 0 );
@ -159,7 +159,7 @@ template<typename _Tp> class Point_
public:
typedef _Tp value_type;
// various constructors
//! default constructor
Point_();
Point_(_Tp _x, _Tp _y);
Point_(const Point_& pt);
@ -181,8 +181,8 @@ public:
double cross(const Point_& pt) const;
//! checks whether the point is inside the specified rectangle
bool inside(const Rect_<_Tp>& r) const;
_Tp x, y; //< the point coordinates
_Tp x; //!< x coordinate of the point
_Tp y; //!< y coordinate of the point
};
typedef Point_<int> Point2i;
@ -239,7 +239,7 @@ template<typename _Tp> class Point3_
public:
typedef _Tp value_type;
// various constructors
//! default constructor
Point3_();
Point3_(_Tp _x, _Tp _y, _Tp _z);
Point3_(const Point3_& pt);
@ -262,8 +262,9 @@ public:
double ddot(const Point3_& pt) const;
//! cross product of the 2 3D points
Point3_ cross(const Point3_& pt) const;
_Tp x, y, z; //< the point coordinates
_Tp x; //!< x coordinate of the 3D point
_Tp y; //!< y coordinate of the 3D point
_Tp z; //!< z coordinate of the 3D point
};
typedef Point3_<int> Point3i;
@ -316,7 +317,7 @@ template<typename _Tp> class Size_
public:
typedef _Tp value_type;
//! various constructors
//! default constructor
Size_();
Size_(_Tp _width, _Tp _height);
Size_(const Size_& sz);
@ -331,7 +332,8 @@ public:
//! conversion of another data type.
template<typename _Tp2> operator Size_<_Tp2>() const;
_Tp width, height; // the width and the height
_Tp width; //!< the width
_Tp height; //!< the height
};
typedef Size_<int> Size2i;
@ -416,7 +418,7 @@ template<typename _Tp> class Rect_
public:
typedef _Tp value_type;
//! various constructors
//! default constructor
Rect_();
Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height);
Rect_(const Rect_& r);
@ -442,7 +444,10 @@ public:
//! checks whether the rectangle contains the point
bool contains(const Point_<_Tp>& pt) const;
_Tp x, y, width, height; //< the top-left corner, as well as width and height of the rectangle
_Tp x; //!< x coordinate of the top-left corner
_Tp y; //!< y coordinate of the top-left corner
_Tp width; //!< width of the rectangle
_Tp height; //!< height of the rectangle
};
typedef Rect_<int> Rect2i;
@ -481,24 +486,10 @@ struct Type< Rect_<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 4) };
/** @brief The class represents rotated (i.e. not up-right) rectangles on a plane.
Each rectangle is specified by the center point (mass center), length of each side (represented by
cv::Size2f structure) and the rotation angle in degrees.
#Size2f structure) and the rotation angle in degrees.
The sample below demonstrates how to use RotatedRect:
@code
Mat image(200, 200, CV_8UC3, Scalar(0));
RotatedRect rRect = RotatedRect(Point2f(100,100), Size2f(100,50), 30);
Point2f vertices[4];
rRect.points(vertices);
for (int i = 0; i < 4; i++)
line(image, vertices[i], vertices[(i+1)%4], Scalar(0,255,0));
Rect brect = rRect.boundingRect();
rectangle(image, brect, Scalar(255,0,0));
imshow("rectangles", image);
waitKey(0);
@endcode
@snippet snippets/core_various.cpp RotatedRect_demo
![image](pics/rotatedrect.png)
@sa CamShift, fitEllipse, minAreaRect, CvBox2D
@ -506,9 +497,9 @@ The sample below demonstrates how to use RotatedRect:
class CV_EXPORTS RotatedRect
{
public:
//! various constructors
//! default constructor
RotatedRect();
/**
/** full constructor
@param center The rectangle mass center.
@param size Width and height of the rectangle.
@param angle The rotation angle in a clockwise direction. When the angle is 0, 90, 180, 270 etc.,
@ -529,10 +520,12 @@ public:
Rect boundingRect() const;
//! returns the minimal (exact) floating point rectangle containing the rotated rectangle, not intended for use with images
Rect_<float> boundingRect2f() const;
Point2f center; //< the rectangle mass center
Size2f size; //< width and height of the rectangle
float angle; //< the rotation angle. When the angle is 0, 90, 180, 270 etc., the rectangle becomes an up-right rectangle.
//! returns the rectangle mass center
Point2f center;
//! returns width and height of the rectangle
Size2f size;
//! returns the rotation angle. When the angle is 0, 90, 180, 270 etc., the rectangle becomes an up-right rectangle.
float angle;
};
template<> class DataType< RotatedRect >
@ -637,7 +630,7 @@ OpenCV to pass pixel values.
template<typename _Tp> class Scalar_ : public Vec<_Tp, 4>
{
public:
//! various constructors
//! default constructor
Scalar_();
Scalar_(_Tp v0, _Tp v1, _Tp v2=0, _Tp v3=0);
Scalar_(_Tp v0);
@ -654,10 +647,10 @@ public:
//! per-element product
Scalar_<_Tp> mul(const Scalar_<_Tp>& a, double scale=1 ) const;
// returns (v0, -v1, -v2, -v3)
//! returns (v0, -v1, -v2, -v3)
Scalar_<_Tp> conj() const;
// returns true iff v1 == v2 == v3 == 0
//! returns true iff v1 == v2 == v3 == 0
bool isReal() const;
};
@ -695,14 +688,13 @@ struct Type< Scalar_<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 4) }
/** @brief Data structure for salient point detectors.
The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint
detectors, such as Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT,
cv::LDetector etc.
detectors, such as Harris corner detector, #FAST, %StarDetector, %SURF, %SIFT etc.
The keypoint is characterized by the 2D position, scale (proportional to the diameter of the
neighborhood that needs to be taken into account), orientation and some other parameters. The
keypoint neighborhood is then analyzed by another algorithm that builds a descriptor (usually
represented as a feature vector). The keypoints representing the same object in different images
can then be matched using cv::KDTree or another method.
can then be matched using %KDTree or another method.
*/
class CV_EXPORTS_W_SIMPLE KeyPoint
{
@ -808,9 +800,9 @@ public:
CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance);
CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance);
CV_PROP_RW int queryIdx; // query descriptor index
CV_PROP_RW int trainIdx; // train descriptor index
CV_PROP_RW int imgIdx; // train image index
CV_PROP_RW int queryIdx; //!< query descriptor index
CV_PROP_RW int trainIdx; //!< train descriptor index
CV_PROP_RW int imgIdx; //!< train image index
CV_PROP_RW float distance;
@ -868,8 +860,8 @@ public:
TermCriteria(int type, int maxCount, double epsilon);
int type; //!< the type of termination criteria: COUNT, EPS or COUNT + EPS
int maxCount; // the maximum number of iterations/elements
double epsilon; // the desired accuracy
int maxCount; //!< the maximum number of iterations/elements
double epsilon; //!< the desired accuracy
};

@ -197,48 +197,7 @@ should have alpha set to 0, fully opaque pixels should have alpha set to 255/655
The sample below shows how to create such a BGRA image and store to PNG file. It also demonstrates how to set custom
compression parameters :
@code
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
void createAlphaMat(Mat &mat)
{
CV_Assert(mat.channels() == 4);
for (int i = 0; i < mat.rows; ++i) {
for (int j = 0; j < mat.cols; ++j) {
Vec4b& bgra = mat.at<Vec4b>(i, j);
bgra[0] = UCHAR_MAX; // Blue
bgra[1] = saturate_cast<uchar>((float (mat.cols - j)) / ((float)mat.cols) * UCHAR_MAX); // Green
bgra[2] = saturate_cast<uchar>((float (mat.rows - i)) / ((float)mat.rows) * UCHAR_MAX); // Red
bgra[3] = saturate_cast<uchar>(0.5 * (bgra[1] + bgra[2])); // Alpha
}
}
}
int main(int argv, char **argc)
{
// Create mat with alpha channel
Mat mat(480, 640, CV_8UC4);
createAlphaMat(mat);
vector<int> compression_params;
compression_params.push_back(IMWRITE_PNG_COMPRESSION);
compression_params.push_back(9);
try {
imwrite("alpha.png", mat, compression_params);
}
catch (cv::Exception& ex) {
fprintf(stderr, "Exception converting image to PNG format: %s\n", ex.what());
return 1;
}
fprintf(stdout, "Saved PNG file with alpha data.\n");
return 0;
}
@endcode
@include snippets/imgcodecs_imwrite.cpp
@param filename Name of the file.
@param img Image to be saved.
@param params Format-specific parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ... .) see cv::ImwriteFlags

File diff suppressed because it is too large Load Diff

@ -73,15 +73,15 @@ int main()
//! [bin]
// Create binary image from source image
Mat bw;
cvtColor(src, bw, CV_BGR2GRAY);
threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
cvtColor(src, bw, COLOR_BGR2GRAY);
threshold(bw, bw, 40, 255, THRESH_BINARY | THRESH_OTSU);
imshow("Binary Image", bw);
//! [bin]
//! [dist]
// Perform the distance transform algorithm
Mat dist;
distanceTransform(bw, dist, CV_DIST_L2, 3);
distanceTransform(bw, dist, DIST_L2, 3);
// Normalize the distance image for range = {0.0, 1.0}
// so we can visualize and threshold it
@ -92,7 +92,7 @@ int main()
//! [peaks]
// Threshold to obtain the peaks
// This will be the markers for the foreground objects
threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
threshold(dist, dist, .4, 1., THRESH_BINARY);
// Dilate a bit the dist image
Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
@ -108,7 +108,7 @@ int main()
// Find total markers
vector<vector<Point> > contours;
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
// Create the marker image for the watershed algorithm
Mat markers = Mat::zeros(dist.size(), CV_32SC1);
@ -165,4 +165,4 @@ int main()
waitKey(0);
return 0;
}
}

@ -23,8 +23,8 @@ int main()
Mat m = (Mat_<uchar>(3,2) << 1,2,3,4,5,6);
Mat col_sum, row_sum;
reduce(m, col_sum, 0, CV_REDUCE_SUM, CV_32F);
reduce(m, row_sum, 1, CV_REDUCE_SUM, CV_32F);
reduce(m, col_sum, 0, REDUCE_SUM, CV_32F);
reduce(m, row_sum, 1, REDUCE_SUM, CV_32F);
/*
m =
[ 1, 2;
@ -40,22 +40,22 @@ int main()
//! [example]
Mat col_average, row_average, col_min, col_max, row_min, row_max;
reduce(m, col_average, 0, CV_REDUCE_AVG, CV_32F);
reduce(m, col_average, 0, REDUCE_AVG, CV_32F);
cout << "col_average =\n" << col_average << endl;
reduce(m, row_average, 1, CV_REDUCE_AVG, CV_32F);
reduce(m, row_average, 1, REDUCE_AVG, CV_32F);
cout << "row_average =\n" << row_average << endl;
reduce(m, col_min, 0, CV_REDUCE_MIN, CV_8U);
reduce(m, col_min, 0, REDUCE_MIN, CV_8U);
cout << "col_min =\n" << col_min << endl;
reduce(m, row_min, 1, CV_REDUCE_MIN, CV_8U);
reduce(m, row_min, 1, REDUCE_MIN, CV_8U);
cout << "row_min =\n" << row_min << endl;
reduce(m, col_max, 0, CV_REDUCE_MAX, CV_8U);
reduce(m, col_max, 0, REDUCE_MAX, CV_8U);
cout << "col_max =\n" << col_max << endl;
reduce(m, row_max, 1, CV_REDUCE_MAX, CV_8U);
reduce(m, row_max, 1, REDUCE_MAX, CV_8U);
cout << "row_max =\n" << row_max << endl;
/*
@ -86,7 +86,7 @@ int main()
char d[] = {1,2,3,4,5,6};
Mat m(3, 1, CV_8UC2, d);
Mat col_sum_per_channel;
reduce(m, col_sum_per_channel, 0, CV_REDUCE_SUM, CV_32F);
reduce(m, col_sum_per_channel, 0, REDUCE_SUM, CV_32F);
/*
col_sum_per_channel =
[9, 12]

@ -0,0 +1,53 @@
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
//! [Algorithm]
Ptr<Feature2D> sbd = SimpleBlobDetector::create();
FileStorage fs_read("SimpleBlobDetector_params.xml", FileStorage::READ);
if (fs_read.isOpened()) // if we have file with parameters, read them
{
sbd->read(fs_read.root());
fs_read.release();
}
else // else modify the parameters and store them; user can later edit the file to use different parameters
{
fs_read.release();
FileStorage fs_write("SimpleBlobDetector_params.xml", FileStorage::WRITE);
sbd->write(fs_write);
fs_write.release();
}
Mat result, image = imread("../data/detect_blob.png", IMREAD_COLOR);
vector<KeyPoint> keypoints;
sbd->detect(image, keypoints, Mat());
drawKeypoints(image, keypoints, result);
for (vector<KeyPoint>::iterator k = keypoints.begin(); k != keypoints.end(); ++k)
circle(result, k->pt, (int)k->size, Scalar(0, 0, 255), 2);
imshow("result", result);
waitKey(0);
//! [Algorithm]
//! [RotatedRect_demo]
Mat test_image(200, 200, CV_8UC3, Scalar(0));
RotatedRect rRect = RotatedRect(Point2f(100,100), Size2f(100,50), 30);
Point2f vertices[4];
rRect.points(vertices);
for (int i = 0; i < 4; i++)
line(test_image, vertices[i], vertices[(i+1)%4], Scalar(0,255,0), 2);
Rect brect = rRect.boundingRect();
rectangle(test_image, brect, Scalar(255,0,0), 2);
imshow("rectangles", test_image);
waitKey(0);
//! [RotatedRect_demo]
return 0;
}

@ -0,0 +1,45 @@
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
static void createAlphaMat(Mat &mat)
{
CV_Assert(mat.channels() == 4);
for (int i = 0; i < mat.rows; ++i)
{
for (int j = 0; j < mat.cols; ++j)
{
Vec4b& bgra = mat.at<Vec4b>(i, j);
bgra[0] = UCHAR_MAX; // Blue
bgra[1] = saturate_cast<uchar>((float (mat.cols - j)) / ((float)mat.cols) * UCHAR_MAX); // Green
bgra[2] = saturate_cast<uchar>((float (mat.rows - i)) / ((float)mat.rows) * UCHAR_MAX); // Red
bgra[3] = saturate_cast<uchar>(0.5 * (bgra[1] + bgra[2])); // Alpha
}
}
}
int main()
{
// Create mat with alpha channel
Mat mat(480, 640, CV_8UC4);
createAlphaMat(mat);
vector<int> compression_params;
compression_params.push_back(IMWRITE_PNG_COMPRESSION);
compression_params.push_back(9);
bool result = false;
try
{
result = imwrite("alpha.png", mat, compression_params);
}
catch (const cv::Exception& ex)
{
fprintf(stderr, "Exception converting image to PNG format: %s\n", ex.what());
}
if (result)
printf("Saved PNG file with alpha data.\n");
else
printf("ERROR: Can't save PNG file.\n");
return result ? 0 : 1;
}
Loading…
Cancel
Save