fix cast bug; add logging

pull/158/head
marina.kolpakova 13 years ago
parent e606a0d651
commit dca27b4622
  1. 87
      modules/gpu/src/cuda/isf-sc.cu
  2. 4
      modules/gpu/src/icf.hpp
  3. 34
      modules/gpu/src/softcascade.cpp

@ -45,6 +45,8 @@
#include <stdio.h>
#include <float.h>
//#define LOG_CUDA_CASCADE
namespace cv { namespace gpu { namespace device {
namespace icf {
@ -85,7 +87,7 @@ namespace icf {
}
}
__global__ void detect(const cv::gpu::icf::Cascade cascade, const uchar* __restrict__ hogluv, const int pitch,
__global__ void detect(const cv::gpu::icf::Cascade cascade, const int* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4> objects)
{
cascade.detectAt(hogluv, pitch, objects);
@ -96,6 +98,11 @@ __global__ void detect(const cv::gpu::icf::Cascade cascade, const uchar* __restr
float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
const int channel, const float threshold) const
{
#if defined LOG_CUDA_CASCADE
printf("feature %d box %d %d %d %d\n", channel, scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w);
printf("rescale: %f [%f %f]\n",level.relScale, level.scaling[0], level.scaling[1]);
#endif
float relScale = level.relScale;
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
@ -107,6 +114,7 @@ float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
float approx = 1.f;
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
{
@ -114,40 +122,72 @@ float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect
approx = expected_new_area / sarea;
}
#if defined LOG_CUDA_CASCADE
printf("new rect: %d box %d %d %d %d rel areas %f %f\n", channel,
scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
#endif
// compensation areas rounding
float rootThreshold = threshold / approx;
// printf(" approx %f\n", rootThreshold);
rootThreshold *= level.scaling[(int)(channel > 6)];
#if defined LOG_CUDA_CASCADE
printf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, level.scaling[(int)(channel > 6)]);
#endif
return rootThreshold;
}
typedef unsigned char uchar;
float __device get(const uchar* __restrict__ hogluv, const int pitch,
float __device get(const int* __restrict__ hogluv, const int pitch,
const int x, const int y, int channel, uchar4 area)
{
const uchar* curr = hogluv + ((channel * 121) + y) * pitch;
#if defined LOG_CUDA_CASCADE
printf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
printf("get for channel %d\n", channel);
printf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
x + area.x, y + area.w);
printf("at point %d %d with offset %d\n", x, y, 0);
#endif
const int* curr = hogluv + ((channel * 121) + y) * pitch;
int a = curr[area.y * pitch + x + area.x];
int b = curr[area.y * pitch + x + area.z];
int c = curr[area.w * pitch + x + area.z];
int d = curr[area.w * pitch + x + area.x];
#if defined LOG_CUDA_CASCADE
printf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
#endif
return (a - b + c - d);
}
void __device icf::Cascade::detectAt(const uchar* __restrict__ hogluv, const int pitch,
void __device icf::Cascade::detectAt(const int* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4>& objects) const
{
const icf::Level* lls = (const icf::Level*)levels.ptr();
Level level = lls[0];
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
// if (x > 0 || y > 0) return;
Level level = lls[0];
if (x >= level.workRect.x || y >= level.workRect.y) return;
#if defined LOG_CUDA_CASCADE
printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
#endif
const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
// printf("Octave: %d %d %d (%d %d) %f\n", octave.index, octave.stages,
// octave.shrinkage, octave.size.x, octave.size.y, octave.scale);
const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
float detectionScore = 0.f;
@ -156,11 +196,17 @@ void __device icf::Cascade::detectAt(const uchar* __restrict__ hogluv, const int
for(; st < stEnd; ++st)
{
const float stage = stages(0, st);
#if defined LOG_CUDA_CASCADE
printf("Stage: %f\n", stage);
#endif
{
const int nId = st * 3;
// work with root node
const Node node = ((const Node*)nodes.ptr())[nId];
#if defined LOG_CUDA_CASCADE
printf("Node: %d %f\n", node.feature, node.threshold);
#endif
const Feature feature = ((const Feature*)features.ptr())[node.feature];
uchar4 scaledRect = feature.rect;
@ -168,31 +214,46 @@ void __device icf::Cascade::detectAt(const uchar* __restrict__ hogluv, const int
float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
#if defined LOG_CUDA_CASCADE
printf("root feature %d %f\n",feature.channel, sum);
#endif
int next = 1 + (int)(sum >= threshold);
#if defined LOG_CUDA_CASCADE
printf("go: %d (%f >= %f)\n\n" ,next, sum, threshold);
#endif
// leaves
const Node leaf = ((const Node*)nodes.ptr())[nId + next];
const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
scaledRect = fLeaf.rect;
threshold = rescale(level, scaledRect, feature.channel, node.threshold);
threshold = rescale(level, scaledRect, fLeaf.channel, leaf.threshold);
sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
float impact = leaves(0, (st * 4) + lShift);
detectionScore += impact;
#if defined LOG_CUDA_CASCADE
printf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
printf("extracted stage:\n");
printf("ct %f\n", stage);
printf("computed score %f\n\n", detectionScore);
printf("\n\n");
#endif
}
if (detectionScore <= stage) break;
}
// if (!threadIdx.x && !threadIdx.y)// printf("%f %d\n", detectionScore, st);
// printf("x %d y %d: %d\n", x, y, st);
#if defined LOG_CUDA_CASCADE
// printf("x %d y %d: %d\n", x, y, st - stBegin);
#endif
if (st == stEnd)
{
// printf(" got %d\n", st);
uchar4 a;
a.x = level.workRect.x;
a.y = level.workRect.y;
@ -200,18 +261,14 @@ void __device icf::Cascade::detectAt(const uchar* __restrict__ hogluv, const int
}
}
void icf::Cascade::detect(const cv::gpu::PtrStepSzb& hogluv, PtrStepSz<uchar4> objects,
cudaStream_t stream) const
void icf::Cascade::detect(const cv::gpu::PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, cudaStream_t stream) const
{
// detection kernel
dim3 block(32, 8, 1);
// dim3 grid(32 * ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 1);
dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 1);
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(ushort), objects);
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(int), objects);
cudaSafeCall( cudaGetLastError() );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
}}

@ -102,8 +102,8 @@ struct Cascade
const cv::gpu::PtrStepSzf& lvs, const cv::gpu::PtrStepSzb& fts, const cv::gpu::PtrStepSzb& lls)
: octaves(octs), stages(sts), nodes(nds), leaves(lvs), features(fts), levels(lls) {}
void detect(const cv::gpu::PtrStepSzb& hogluv, cv::gpu::PtrStepSz<uchar4> objects, cudaStream_t stream) const;
void __device detectAt(const uchar* __restrict__ hogluv, const int pitch, PtrStepSz<uchar4>& objects) const;
void detect(const cv::gpu::PtrStepSzi& hogluv, cv::gpu::PtrStepSz<uchar4> objects, cudaStream_t stream) const;
void __device detectAt(const int* __restrict__ hogluv, const int pitch, PtrStepSz<uchar4>& objects) const;
float __device rescale(const icf::Level& level, uchar4& scaledRect,
const int channel, const float threshold) const;

@ -381,6 +381,9 @@ inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector<icf::Octav
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
// printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
// std::cout << "level " << sc
// << " octeve "
// << vlevels[sc].octave
@ -421,6 +424,15 @@ bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, c
return true;
}
namespace {
char *itoa(long i, char* s, int /*dummy_radix*/)
{
sprintf(s, "%ld", i);
return s;
}
}
#define USE_REFERENCE_VALUES
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& /*rois*/,
GpuMat& objects, const int /*rejectfactor*/, Stream s)
{
@ -431,14 +443,26 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat&
CV_Assert(colored.cols == 640 && colored.rows == 480);
Filds& flds = *filds;
#if defined USE_REFERENCE_VALUES
cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ);
char buff[33];
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
{
cv::Mat channel;
imgs[std::string("channel") + itoa(i, buff, 10)] >> channel;
GpuMat gchannel(flds.hogluv, cv::Rect(0, 121 * i, 161, 121));
gchannel.upload(channel);
}
#else
GpuMat& dmem = flds.dmem;
cudaMemset(dmem.data, 0, dmem.step * dmem.rows);
GpuMat& shrunk = flds.shrunk;
int w = shrunk.cols;
int h = colored.rows / flds.storage.shrinkage;
cudaStream_t stream = StreamAccessor::getStream(s);
std::vector<GpuMat> splited;
for(int i = 0; i < 3; ++i)
{
@ -468,9 +492,6 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat&
GpuMat plane(dmem, cv::Rect(0, 0, colored.cols, colored.rows * Filds::HOG_LUV_BINS));
cv::gpu::resize(plane, flds.shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
// cv::Mat cpu(plane);
// cv::imshow("channels", cpu);
// cv::waitKey(0);
// fer debug purpose
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
@ -482,6 +503,9 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat&
cv::gpu::integralBuffered(channel, sum, flds.integralBuffer);
}
#endif
cudaStream_t stream = StreamAccessor::getStream(s);
// detection
flds.detect(objects, stream);

Loading…
Cancel
Save