mirror of https://github.com/opencv/opencv.git
parent
8f0d36b8b6
commit
dc9e5eda19
8 changed files with 279 additions and 224 deletions
@ -1,2 +1,2 @@ |
||||
define_opencv_module(features2d opencv_core opencv_imgproc opencv_calib3d opencv_highgui opencv_flann) |
||||
define_opencv_module(features2d opencv_core opencv_imgproc opencv_highgui opencv_flann) |
||||
|
||||
|
@ -1 +1 @@ |
||||
define_opencv_module(objdetect opencv_core opencv_imgproc opencv_highgui) |
||||
define_opencv_module(objdetect opencv_core opencv_imgproc opencv_highgui opencv_features2d opencv_calib3d) |
||||
|
@ -0,0 +1,221 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <stdio.h> |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
////////////////////////////////////// Planar Object Detector ////////////////////////////////////
|
||||
|
||||
PlanarObjectDetector::PlanarObjectDetector() |
||||
{ |
||||
} |
||||
|
||||
PlanarObjectDetector::PlanarObjectDetector(const FileNode& node) |
||||
{ |
||||
read(node); |
||||
} |
||||
|
||||
PlanarObjectDetector::PlanarObjectDetector(const vector<Mat>& pyr, int npoints, |
||||
int patchSize, int nstructs, int structSize, |
||||
int nviews, const LDetector& detector, |
||||
const PatchGenerator& patchGenerator) |
||||
{ |
||||
train(pyr, npoints, patchSize, nstructs, |
||||
structSize, nviews, detector, patchGenerator); |
||||
} |
||||
|
||||
PlanarObjectDetector::~PlanarObjectDetector() |
||||
{ |
||||
} |
||||
|
||||
vector<KeyPoint> PlanarObjectDetector::getModelPoints() const |
||||
{ |
||||
return modelPoints; |
||||
} |
||||
|
||||
void PlanarObjectDetector::train(const vector<Mat>& pyr, int npoints, |
||||
int patchSize, int nstructs, int structSize, |
||||
int nviews, const LDetector& detector, |
||||
const PatchGenerator& patchGenerator) |
||||
{ |
||||
modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows); |
||||
ldetector = detector; |
||||
ldetector.setVerbose(verbose); |
||||
ldetector.getMostStable2D(pyr[0], modelPoints, npoints, patchGenerator); |
||||
|
||||
npoints = (int)modelPoints.size(); |
||||
fernClassifier.setVerbose(verbose); |
||||
fernClassifier.trainFromSingleView(pyr[0], modelPoints, |
||||
patchSize, (int)modelPoints.size(), nstructs, structSize, nviews, |
||||
FernClassifier::COMPRESSION_NONE, patchGenerator); |
||||
} |
||||
|
||||
void PlanarObjectDetector::train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints, |
||||
int patchSize, int nstructs, int structSize, |
||||
int nviews, const LDetector& detector, |
||||
const PatchGenerator& patchGenerator) |
||||
{ |
||||
modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows); |
||||
ldetector = detector; |
||||
ldetector.setVerbose(verbose); |
||||
modelPoints.resize(keypoints.size()); |
||||
std::copy(keypoints.begin(), keypoints.end(), modelPoints.begin()); |
||||
|
||||
fernClassifier.setVerbose(verbose); |
||||
fernClassifier.trainFromSingleView(pyr[0], modelPoints, |
||||
patchSize, (int)modelPoints.size(), nstructs, structSize, nviews, |
||||
FernClassifier::COMPRESSION_NONE, patchGenerator); |
||||
} |
||||
|
||||
void PlanarObjectDetector::read(const FileNode& node) |
||||
{ |
||||
FileNodeIterator it = node["model-roi"].begin(), it_end; |
||||
it >> modelROI.x >> modelROI.y >> modelROI.width >> modelROI.height; |
||||
ldetector.read(node["detector"]); |
||||
fernClassifier.read(node["fern-classifier"]); |
||||
cv::read(node["model-points"], modelPoints); |
||||
CV_Assert(modelPoints.size() == (size_t)fernClassifier.getClassCount()); |
||||
} |
||||
|
||||
|
||||
void PlanarObjectDetector::write(FileStorage& fs, const String& objname) const |
||||
{ |
||||
WriteStructContext ws(fs, objname, CV_NODE_MAP); |
||||
|
||||
{ |
||||
WriteStructContext wsroi(fs, "model-roi", CV_NODE_SEQ + CV_NODE_FLOW); |
||||
cv::write(fs, modelROI.x); |
||||
cv::write(fs, modelROI.y); |
||||
cv::write(fs, modelROI.width); |
||||
cv::write(fs, modelROI.height); |
||||
} |
||||
ldetector.write(fs, "detector"); |
||||
cv::write(fs, "model-points", modelPoints); |
||||
fernClassifier.write(fs, "fern-classifier"); |
||||
} |
||||
|
||||
|
||||
bool PlanarObjectDetector::operator()(const Mat& image, Mat& H, vector<Point2f>& corners) const |
||||
{ |
||||
vector<Mat> pyr; |
||||
buildPyramid(image, pyr, ldetector.nOctaves - 1); |
||||
vector<KeyPoint> keypoints; |
||||
ldetector(pyr, keypoints); |
||||
|
||||
return (*this)(pyr, keypoints, H, corners); |
||||
} |
||||
|
||||
bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints, |
||||
Mat& matH, vector<Point2f>& corners, vector<int>* pairs) const |
||||
{ |
||||
int i, j, m = (int)modelPoints.size(), n = (int)keypoints.size(); |
||||
vector<int> bestMatches(m, -1); |
||||
vector<float> maxLogProb(m, -FLT_MAX); |
||||
vector<float> signature; |
||||
vector<Point2f> fromPt, toPt; |
||||
|
||||
for( i = 0; i < n; i++ ) |
||||
{ |
||||
KeyPoint kpt = keypoints[i]; |
||||
CV_Assert(0 <= kpt.octave && kpt.octave < (int)pyr.size()); |
||||
kpt.pt.x /= (float)(1 << kpt.octave); |
||||
kpt.pt.y /= (float)(1 << kpt.octave); |
||||
int k = fernClassifier(pyr[kpt.octave], kpt.pt, signature); |
||||
if( k >= 0 && (bestMatches[k] < 0 || signature[k] > maxLogProb[k]) ) |
||||
{ |
||||
maxLogProb[k] = signature[k]; |
||||
bestMatches[k] = i; |
||||
} |
||||
} |
||||
|
||||
if(pairs) |
||||
pairs->resize(0); |
||||
|
||||
for( i = 0; i < m; i++ ) |
||||
if( bestMatches[i] >= 0 ) |
||||
{ |
||||
fromPt.push_back(modelPoints[i].pt); |
||||
toPt.push_back(keypoints[bestMatches[i]].pt); |
||||
} |
||||
|
||||
if( fromPt.size() < 4 ) |
||||
return false; |
||||
|
||||
vector<uchar> mask; |
||||
matH = findHomography(Mat(fromPt), Mat(toPt), mask, RANSAC, 10); |
||||
if( matH.data ) |
||||
{ |
||||
const Mat_<double>& H = matH; |
||||
corners.resize(4); |
||||
for( i = 0; i < 4; i++ ) |
||||
{ |
||||
Point2f pt((float)(modelROI.x + (i == 0 || i == 3 ? 0 : modelROI.width)), |
||||
(float)(modelROI.y + (i <= 1 ? 0 : modelROI.height))); |
||||
double w = 1./(H(2,0)*pt.x + H(2,1)*pt.y + H(2,2)); |
||||
corners[i] = Point2f((float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w), |
||||
(float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w)); |
||||
} |
||||
} |
||||
|
||||
if( pairs ) |
||||
{ |
||||
for( i = j = 0; i < m; i++ ) |
||||
if( bestMatches[i] >= 0 && mask[j++] ) |
||||
{ |
||||
pairs->push_back(i); |
||||
pairs->push_back(bestMatches[i]); |
||||
} |
||||
} |
||||
|
||||
return matH.data != 0; |
||||
} |
||||
|
||||
|
||||
void PlanarObjectDetector::setVerbose(bool _verbose) |
||||
{ |
||||
verbose = _verbose; |
||||
} |
||||
|
||||
} |
Loading…
Reference in new issue