OpenCV friendly xml format for soft cascade

pull/137/head
marina.kolpakova 13 years ago
parent c04725b681
commit dc74ce20ab
  1. 28
      modules/objdetect/include/opencv2/objdetect/objdetect.hpp
  2. 525
      modules/objdetect/src/softcascade.cpp
  3. 5
      modules/objdetect/test/test_softcascade.cpp

@ -493,32 +493,36 @@ protected:
class CV_EXPORTS SoftCascade class CV_EXPORTS SoftCascade
{ {
public: public:
//! empty cascade will be created. //! An empty cascade will be created.
SoftCascade(); SoftCascade();
//! cascade will be loaded from file "filename" //! Cascade will be created from file for scales from minScale to maxScale.
//! Param filename is a path to xml-serialized cascade.
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
SoftCascade( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f); SoftCascade( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f);
//! cascade will be loaded from file "filename". The previous cascade will be destroyed.
//! Param filename is a path to xml-serialized cascade.
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
bool load( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f); bool load( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f);
virtual ~SoftCascade(); virtual ~SoftCascade();
//! return vector of bounding boxes. Each box contains detected object //! return vector of bounding boxes. Each box contains one detected object
virtual void detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<cv::Rect>& objects, virtual void detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<cv::Rect>& objects,
int step = 4, int rejectfactor = 1); int step = 4, int rejectfactor = 1);
protected: protected:
virtual void detectForOctave(int octave);
// virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
// int stripSize, int yStep, double factor, vector<Rect>& candidates,
// vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false);
enum { BOOST = 0 }; enum { BOOST = 0 };
enum enum
{ {
FRAME_WIDTH = 640, FRAME_WIDTH = 640,
FRAME_HEIGHT = 480, FRAME_HEIGHT = 480,
TOTAL_SCALES = 55, TOTAL_SCALES = 55,
CLASSIFIERS = 5, CLASSIFIERS = 5,
ORIG_OBJECT_WIDTH = 64, ORIG_OBJECT_WIDTH = 64,
ORIG_OBJECT_HEIGHT = 128 ORIG_OBJECT_HEIGHT = 128
}; };

@ -45,134 +45,160 @@
#include <vector> #include <vector>
#include <string> #include <string>
#include <stdio.h> #include <iostream>
namespace { namespace {
static const char* SC_OCT_SCALE = "scale";
static const char* SC_OCT_STAGES = "stageNum";
struct Octave struct Octave
{ {
float scale; float scale;
int stages; int stages;
cv::Size size;
int shrinkage;
static const char *const SC_OCT_SCALE;
static const char *const SC_OCT_STAGES;
static const char *const SC_OCT_SHRINKAGE;
Octave(){} Octave(){}
Octave(const cv::FileNode& fn) : scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES]) Octave(cv::Size origObjSize, const cv::FileNode& fn)
{/*printf("octave: %f %d\n", scale, stages);*/} : scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES]),
size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)),
shrinkage((int)fn[SC_OCT_SHRINKAGE])
{}
}; };
static const char *SC_STAGE_THRESHOLD = "stageThreshold"; const char *const Octave::SC_OCT_SCALE = "scale";
static const char *SC_STAGE_WEIGHT = "weight"; const char *const Octave::SC_OCT_STAGES = "stageNum";
const char *const Octave::SC_OCT_SHRINKAGE = "shrinkingFactor";
struct Stage struct Stage
{ {
float threshold; float threshold;
float weight;
static const char *const SC_STAGE_THRESHOLD;
Stage(){} Stage(){}
Stage(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD]), weight((float)fn[SC_STAGE_WEIGHT]) Stage(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD])
{/*printf(" stage: %f %f\n",threshold, weight);*/} { std::cout << " stage: " << threshold << std::endl; }
}; };
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper const char *const Stage::SC_STAGE_THRESHOLD = "stageThreshold";
struct CascadeIntrinsics
{
static const float lambda = 1.099f, a = 0.89f;
static const float intrinsics[10][4];
static float getFor(int channel, float scaling)
{
CV_Assert(channel < 10);
if ((scaling - 1.f) < FLT_EPSILON)
return 1.f;
int ud = (int)(scaling < 1.f); struct Node
return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]); {
} int feature;
float threshold;
Node(){}
Node(cv::FileNodeIterator& fIt) : feature((int)(*(fIt +=2)++)), threshold((float)(*(fIt++)))
{ std::cout << " Node: " << feature << " " << threshold << std::endl; }
}; };
const float CascadeIntrinsics::intrinsics[10][4] =
{ //da, db, ua, ub
// hog-like orientation bins
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
{a, lambda / log(2), 1, 2},
// gradient magnitude
{a, lambda / log(2), 1, 2},
// luv color channels
{1, 2, 1, 2},
{1, 2, 1, 2},
{1, 2, 1, 2}
};
static const char *SC_F_THRESHOLD = "threshold";
static const char *SC_F_DIRECTION = "direction";
static const char *SC_F_CHANNEL = "channel";
static const char *SC_F_RECT = "rect";
struct Feature struct Feature
{ {
float threshold;
int direction;
int channel; int channel;
cv::Rect rect; cv::Rect rect;
static const char * const SC_F_CHANNEL;
static const char * const SC_F_RECT;
Feature() {} Feature() {}
Feature(const cv::FileNode& fn) Feature(const cv::FileNode& fn) : channel((int)fn[SC_F_CHANNEL])
: threshold((float)fn[SC_F_THRESHOLD]), direction((int)fn[SC_F_DIRECTION]),
channel((int)fn[SC_F_CHANNEL])
{ {
cv::FileNode rn = fn[SC_F_RECT]; cv::FileNode rn = fn[SC_F_RECT];
cv::FileNodeIterator r_it = rn.begin(); cv::FileNodeIterator r_it = rn.end();
rect = cv::Rect(*(r_it++), *(r_it++), *(r_it++), *(r_it++)); rect = cv::Rect(*(--r_it), *(--r_it), *(--r_it), *(--r_it));
// printf(" feature: %f %d %d [%d %d %d %d]\n",threshold, direction, channel, rect.x, rect.y, rect.width, rect.height); std::cout << "feature: " << rect.x << " " << rect.y << " " << rect.width << " " << rect.height << " " << channel << std::endl;
}
Feature rescale(float relScale)
{
Feature res(*this);
res.rect = cv::Rect (cvRound(rect.x * relScale), cvRound(rect.y * relScale),
cvRound(rect.width * relScale), cvRound(rect.height * relScale));
res.threshold = threshold * CascadeIntrinsics::getFor(channel, relScale);
return res;
}
};
struct Level
{
int index;
float factor;
float logFactor;
int width;
int height;
float octave;
cv::Size objSize;
Level(int i,float f, float lf, int w, int h): index(i), factor(f), logFactor(lf), width(w), height(h), octave(0.f) {}
void assign(float o, int detW, int detH)
{
octave = o;
objSize = cv::Size(cv::saturate_cast<int>(detW * o), cv::saturate_cast<int>(detH * o));
} }
float relScale() {return (factor / octave); } // Feature rescale(float relScale)
// {
// Feature res(*this);
// res.rect = cv::Rect (cvRound(rect.x * relScale), cvRound(rect.y * relScale),
// cvRound(rect.width * relScale), cvRound(rect.height * relScale));
// res.threshold = threshold * CascadeIntrinsics::getFor(channel, relScale);
// return res;
// }
}; };
struct Integral const char * const Feature::SC_F_CHANNEL = "channel";
{ const char * const Feature::SC_F_RECT = "rect";
cv::Mat magnitude; // // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
std::vector<cv::Mat> hist; // struct CascadeIntrinsics
cv::Mat luv; // {
// static const float lambda = 1.099f, a = 0.89f;
Integral(cv::Mat m, std::vector<cv::Mat> h, cv::Mat l) : magnitude(m), hist(h), luv(l) {} // static const float intrinsics[10][4];
};
// static float getFor(int channel, float scaling)
// {
// CV_Assert(channel < 10);
// if ((scaling - 1.f) < FLT_EPSILON)
// return 1.f;
// int ud = (int)(scaling < 1.f);
// return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
// }
// };
// const float CascadeIntrinsics::intrinsics[10][4] =
// { //da, db, ua, ub
// // hog-like orientation bins
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// // gradient magnitude
// {a, lambda / log(2), 1, 2},
// // luv color channels
// {1, 2, 1, 2},
// {1, 2, 1, 2},
// {1, 2, 1, 2}
// };
// struct Level
// {
// int index;
// float factor;
// float logFactor;
// int width;
// int height;
// Octave octave;
// cv::Size objSize;
// cv::Size dWinSize;
// static const float shrinkage = 0.25;
// Level(int i,float f, float lf, int w, int h): index(i), factor(f), logFactor(lf), width(w), height(h), octave(Octave())
// {}
// void assign(const Octave& o, int detW, int detH)
// {
// octave = o;
// objSize = cv::Size(cv::saturate_cast<int>(detW * o.scale), cv::saturate_cast<int>(detH * o.scale));
// }
// float relScale() {return (factor / octave.scale); }
// float srScale() {return (factor / octave.scale * shrinkage); }
// };
// struct Integral
// {
// cv::Mat magnitude;
// std::vector<cv::Mat> hist;
// cv::Mat luv;
// Integral(cv::Mat m, std::vector<cv::Mat> h, cv::Mat l) : magnitude(m), hist(h), luv(l) {}
// };
} }
struct cv::SoftCascade::Filds struct cv::SoftCascade::Filds
@ -183,68 +209,72 @@ struct cv::SoftCascade::Filds
int origObjWidth; int origObjWidth;
int origObjHeight; int origObjHeight;
int noctaves;
std::vector<Octave> octaves; std::vector<Octave> octaves;
std::vector<Stage> stages; std::vector<Stage> stages;
std::vector<Feature> features; std::vector<Node> nodes;
std::vector<Level> levels; std::vector<float> leaves;
typedef std::vector<Stage>::iterator stIter_t;
// carrently roi must be save for out of ranges.
void detectInRoi(const cv::Rect& roi, const Integral& ints, std::vector<cv::Rect>& objects, const int step)
{
for (int dy = roi.y; dy < roi.height; dy+=step)
for (int dx = roi.x; dx < roi.width; dx += step)
{
applyCascade(ints, dx, dy);
}
}
void applyCascade(const Integral& ints, const int x, const int y)
{
for (stIter_t sIt = sIt.begin(); sIt != stages.end(); ++sIt)
{
Stage stage& = *sIt;
}
}
// compute levels of full pyramid std::vector<Feature> features;
void calcLevels(int frameW, int frameH, int scales)
{
CV_Assert(scales > 1);
levels.clear();
float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
float scale = minScale;
for (int sc = 0; sc < scales; ++sc)
{
Level level(sc, scale, log(scale) + logFactor,
std::max(0.0f, frameW - (origObjWidth * scale)), std::max(0.0f, frameH - (origObjHeight * scale)));
if (!level.width || !level.height)
break;
else
levels.push_back(level);
if (fabs(scale - maxScale) < FLT_EPSILON) break;
scale = std::min(maxScale, expf(log(scale) + logFactor));
}
for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level) // typedef std::vector<Stage>::iterator stIter_t;
{
float minAbsLog = FLT_MAX; // // carrently roi must be save for out of ranges.
for (std::vector<Octave>::iterator oct = octaves.begin(); oct < octaves.end(); ++oct) // void detectInRoi(const cv::Rect& roi, const Integral& ints, std::vector<cv::Rect>& objects, const int step)
{ // {
const Octave& octave =*oct; // for (int dy = roi.y; dy < roi.height; dy+=step)
float logOctave = log(octave.scale); // for (int dx = roi.x; dx < roi.width; dx += step)
float logAbsScale = fabs((*level).logFactor - logOctave); // {
// applyCascade(ints, dx, dy);
if(logAbsScale < minAbsLog) // }
(*level).assign(octave.scale, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT); // }
}
} // void applyCascade(const Integral& ints, const int x, const int y)
} // {
// for (stIter_t sIt = stages.begin(); sIt != stages.end(); ++sIt)
// {
// Stage& stage = *sIt;
// }
// }
// // compute levels of full pyramid
// void calcLevels(int frameW, int frameH, int scales)
// {
// CV_Assert(scales > 1);
// levels.clear();
// float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
// float scale = minScale;
// for (int sc = 0; sc < scales; ++sc)
// {
// Level level(sc, scale, log(scale), std::max(0.0f, frameW - (origObjWidth * scale)), std::max(0.0f, frameH - (origObjHeight * scale)));
// if (!level.width || !level.height)
// break;
// else
// levels.push_back(level);
// if (fabs(scale - maxScale) < FLT_EPSILON) break;
// scale = std::min(maxScale, expf(log(scale) + logFactor));
// }
// for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level)
// {
// float minAbsLog = FLT_MAX;
// for (std::vector<Octave>::iterator oct = octaves.begin(); oct < octaves.end(); ++oct)
// {
// const Octave& octave =*oct;
// float logOctave = log(octave.scale);
// float logAbsScale = fabs((*level).logFactor - logOctave);
// if(logAbsScale < minAbsLog)
// {
// printf("######### %f %f %f %f\n", octave.scale, logOctave, logAbsScale, (*level).logFactor);
// minAbsLog = logAbsScale;
// (*level).assign(octave, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT);
// }
// }
// }
// }
bool fill(const FileNode &root, const float mins, const float maxs) bool fill(const FileNode &root, const float mins, const float maxs)
{ {
@ -252,19 +282,22 @@ struct cv::SoftCascade::Filds
maxScale = maxs; maxScale = maxs;
// cascade properties // cascade properties
const char *SC_STAGE_TYPE = "stageType"; static const char *const SC_STAGE_TYPE = "stageType";
const char *SC_BOOST = "BOOST"; static const char *const SC_BOOST = "BOOST";
const char *SC_FEATURE_TYPE = "featureType";
const char *SC_ICF = "ICF"; static const char *const SC_FEATURE_TYPE = "featureType";
const char *SC_TREE_TYPE = "stageTreeType"; static const char *const SC_ICF = "ICF";
const char *SC_STAGE_TH2 = "TH2";
const char *SC_NUM_OCTAVES = "octavesNum"; static const char *const SC_ORIG_W = "width";
const char *SC_ORIG_W = "origObjWidth"; static const char *const SC_ORIG_H = "height";
const char *SC_ORIG_H = "origObjHeight";
const char* SC_OCTAVES = "octaves"; static const char *const SC_OCTAVES = "octaves";
const char *SC_STAGES = "stages"; static const char *const SC_STAGES = "stages";
const char *SC_FEATURES = "features"; static const char *const SC_FEATURES = "features";
static const char *const SC_WEEK = "weakClassifiers";
static const char *const SC_INTERNAL = "internalNodes";
static const char *const SC_LEAF = "leafValues";
// only boost supported // only boost supported
@ -275,14 +308,6 @@ struct cv::SoftCascade::Filds
string featureTypeStr = (string)root[SC_FEATURE_TYPE]; string featureTypeStr = (string)root[SC_FEATURE_TYPE];
CV_Assert(featureTypeStr == SC_ICF); CV_Assert(featureTypeStr == SC_ICF);
// only trees of height 2
string stageTreeTypeStr = (string)root[SC_TREE_TYPE];
CV_Assert(stageTreeTypeStr == SC_STAGE_TH2);
// not empty
noctaves = (int)root[SC_NUM_OCTAVES];
CV_Assert(noctaves > 0);
origObjWidth = (int)root[SC_ORIG_W]; origObjWidth = (int)root[SC_ORIG_W];
CV_Assert(origObjWidth == SoftCascade::ORIG_OBJECT_WIDTH); CV_Assert(origObjWidth == SoftCascade::ORIG_OBJECT_WIDTH);
@ -293,15 +318,17 @@ struct cv::SoftCascade::Filds
FileNode fn = root[SC_OCTAVES]; FileNode fn = root[SC_OCTAVES];
if (fn.empty()) return false; if (fn.empty()) return false;
octaves.reserve(noctaves); // octaves.reserve(noctaves);
FileNodeIterator it = fn.begin(), it_end = fn.end(); FileNodeIterator it = fn.begin(), it_end = fn.end();
for (; it != it_end; ++it) for (; it != it_end; ++it)
{ {
FileNode fns = *it; FileNode fns = *it;
Octave octave = Octave(fns); Octave octave(cv::Size(SoftCascade::ORIG_OBJECT_WIDTH, SoftCascade::ORIG_OBJECT_HEIGHT), fns);
CV_Assert(octave.stages > 0); CV_Assert(octave.stages > 0);
octaves.push_back(octave); octaves.push_back(octave);
stages.reserve(stages.size() + octave.stages);
FileNode ffs = fns[SC_FEATURES];
if (ffs.empty()) return false;
fns = fns[SC_STAGES]; fns = fns[SC_STAGES];
if (fn.empty()) return false; if (fn.empty()) return false;
@ -313,14 +340,25 @@ struct cv::SoftCascade::Filds
fns = *st; fns = *st;
stages.push_back(Stage(fns)); stages.push_back(Stage(fns));
fns = fns[SC_FEATURES]; fns = fns[SC_WEEK];
// for each feature for tree. features stored in order {root, left, right}
FileNodeIterator ftr = fns.begin(), ft_end = fns.end(); FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
for (; ftr != ft_end; ++ftr) for (; ftr != ft_end; ++ftr)
{ {
features.push_back(Feature(*ftr)); fns = (*ftr)[SC_INTERNAL];
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
for (; inIt != inIt_end;)
nodes.push_back(Node(inIt));
fns = (*ftr)[SC_LEAF];
inIt = fns.begin(), inIt_end = fns.end();
for (; inIt != inIt_end; ++inIt)
leaves.push_back((float)(*inIt));
} }
} }
st = ffs.begin(), st_end = ffs.end();
for (; st != st_end; ++st )
features.push_back(Feature(*st));
} }
return true; return true;
} }
@ -349,7 +387,7 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const
filds = new Filds; filds = new Filds;
Filds& flds = *filds; Filds& flds = *filds;
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false; if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
flds.calcLevels(FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES); // // flds.calcLevels(FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
return true; return true;
} }
@ -358,87 +396,84 @@ namespace {
void calcHistBins(const cv::Mat& grey, cv::Mat magIntegral, std::vector<cv::Mat>& histInts, const int bins) void calcHistBins(const cv::Mat& grey, cv::Mat magIntegral, std::vector<cv::Mat>& histInts, const int bins)
{ {
CV_Assert( grey.type() == CV_8U); // CV_Assert( grey.type() == CV_8U);
const int rows = grey.rows + 1; // const int rows = grey.rows + 1;
const int cols = grey.cols + 1; // const int cols = grey.cols + 1;
cv::Size intSumSize(cols, rows); // cv::Size intSumSize(cols, rows);
histInts.clear(); // histInts.clear();
std::vector<cv::Mat> hist; // std::vector<cv::Mat> hist;
for (int bin = 0; bin < bins; ++bin) // for (int bin = 0; bin < bins; ++bin)
{ // {
hist.push_back(cv::Mat(rows, cols, CV_32FC1)); // hist.push_back(cv::Mat(rows, cols, CV_32FC1));
} // }
cv::Mat df_dx, df_dy, mag, angle; // cv::Mat df_dx, df_dy, mag, angle;
cv::Sobel(grey, df_dx, CV_32F, 1, 0); // cv::Sobel(grey, df_dx, CV_32F, 1, 0);
cv::Sobel(grey, df_dy, CV_32F, 0, 1); // cv::Sobel(grey, df_dy, CV_32F, 0, 1);
cv::cartToPolar(df_dx, df_dy, mag, angle, true); // cv::cartToPolar(df_dx, df_dy, mag, angle, true);
const float magnitudeScaling = 1.0 / sqrt(2); // const float magnitudeScaling = 1.0 / sqrt(2);
mag *= magnitudeScaling; // mag *= magnitudeScaling;
angle /= 60; // angle /= 60;
for (int h = 0; h < mag.rows; ++h) // for (int h = 0; h < mag.rows; ++h)
{ // {
float* magnitude = mag.ptr<float>(h); // float* magnitude = mag.ptr<float>(h);
float* ang = angle.ptr<float>(h); // float* ang = angle.ptr<float>(h);
for (int w = 0; w < mag.cols; ++w) // for (int w = 0; w < mag.cols; ++w)
{ // {
hist[(int)ang[w]].ptr<float>(h)[w] = magnitude[w]; // hist[(int)ang[w]].ptr<float>(h)[w] = magnitude[w];
} // }
} // }
for (int bin = 0; bin < bins; ++bin) // for (int bin = 0; bin < bins; ++bin)
{ // {
cv::Mat sum; // cv::Mat sum;
cv::integral(hist[bin], sum); // cv::integral(hist[bin], sum);
histInts.push_back(sum); // histInts.push_back(sum);
} // }
cv::integral(mag, magIntegral, mag.depth()); // cv::integral(mag, magIntegral, mag.depth());
} }
} }
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<cv::Rect>& objects, void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<cv::Rect>& objects,
const int step, const int rejectfactor) const int step, const int rejectfactor)// add step scaling
{ {
typedef std::vector<cv::Rect>::const_iterator RIter_t; // typedef std::vector<cv::Rect>::const_iterator RIter_t;
// only color images are supperted // // only color images are supperted
CV_Assert(image.type() == CV_8UC3); // CV_Assert(image.type() == CV_8UC3);
// only this window size allowed // // only this window size allowed
CV_Assert(image.cols == 640 && image.rows == 480); // CV_Assert(image.cols == 640 && image.rows == 480);
objects.clear(); // objects.clear();
// create integrals // // create integrals
cv::Mat luv; // cv::Mat luv;
cv::cvtColor(image, luv, CV_BGR2Luv); // cv::cvtColor(image, luv, CV_BGR2Luv);
cv::Mat luvIntegral; // cv::Mat luvIntegral;
cv::integral(luv, luvIntegral); // cv::integral(luv, luvIntegral);
cv::Mat grey; // cv::Mat grey;
cv::cvtColor(image, grey, CV_RGB2GRAY); // cv::cvtColor(image, grey, CV_RGB2GRAY);
std::vector<cv::Mat> hist; // std::vector<cv::Mat> hist;
cv::Mat magnitude; // cv::Mat magnitude;
const int bins = 6; // const int bins = 6;
calcHistBins(grey, magnitude, hist, bins); // calcHistBins(grey, magnitude, hist, bins);
Integral integrals(magnitude, hist, luv); // Integral integrals(magnitude, hist, luv);
for (RIter_t it = rois.begin(); it != rois.end(); ++it) // for (RIter_t it = rois.begin(); it != rois.end(); ++it)
{ // {
const cv::Rect& roi = *it; // const cv::Rect& roi = *it;
(*filds).detectInRoi(roi, integrals, objects, step); // (*filds).detectInRoi(roi, integrals, objects, step);
} // }
}
void cv::SoftCascade::detectForOctave(const int octave) }
{}

@ -43,16 +43,15 @@
TEST(SoftCascade, readCascade) TEST(SoftCascade, readCascade)
{ {
std::string xml = "/home/kellan/icf-template.xml"; std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/icf-template.xml";
cv::SoftCascade cascade; cv::SoftCascade cascade;
ASSERT_TRUE(cascade.load(xml)); ASSERT_TRUE(cascade.load(xml));
} }
TEST(SoftCascade, Detect) TEST(SoftCascade, detect)
{ {
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/softcascade.xml"; std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/softcascade.xml";
std::cout << "PATH: "<< xml << std::endl;
cv::SoftCascade cascade; cv::SoftCascade cascade;
ASSERT_TRUE(cascade.load(xml)); ASSERT_TRUE(cascade.load(xml));

Loading…
Cancel
Save