Merge pull request #4053 from vpisarev:calib3d_fixes

pull/4058/head
Vadim Pisarevsky 10 years ago
commit dc587992a0
  1. 4
      modules/calib3d/src/calibration.cpp
  2. 7
      modules/calib3d/src/ptsetreg.cpp
  3. 58
      modules/calib3d/src/solvepnp.cpp
  4. 70
      modules/calib3d/test/test_cameracalibration.cpp
  5. 17
      modules/calib3d/test/test_fundam.cpp
  6. 118
      modules/calib3d/test/test_homography.cpp
  7. 81
      modules/calib3d/test/test_solvepnp_ransac.cpp
  8. 11
      modules/core/src/mathfuncs.cpp

@ -820,9 +820,9 @@ CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
{
dpdk_p[5] = fx*x*cdist*(-icdist2)*icdist2*r2;
dpdk_p[dpdk_step+5] = fy*y*cdist*(-icdist2)*icdist2*r2;
dpdk_p[6] = fx*x*icdist2*cdist*(-icdist2)*icdist2*r4;
dpdk_p[6] = fx*x*cdist*(-icdist2)*icdist2*r4;
dpdk_p[dpdk_step+6] = fy*y*cdist*(-icdist2)*icdist2*r4;
dpdk_p[7] = fx*x*icdist2*cdist*(-icdist2)*icdist2*r6;
dpdk_p[7] = fx*x*cdist*(-icdist2)*icdist2*r6;
dpdk_p[dpdk_step+7] = fy*y*cdist*(-icdist2)*icdist2*r6;
if( _dpdk->cols > 8 )
{

@ -80,7 +80,7 @@ public:
int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000)
: cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters)
{
checkPartialSubsets = true;
checkPartialSubsets = false;
}
int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const
@ -145,6 +145,9 @@ public:
ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k];
if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 ))
{
// we may have selected some bad points;
// so, let's remove some of them randomly
i = rng.uniform(0, i+1);
iters++;
continue;
}
@ -206,7 +209,7 @@ public:
int i, goodCount, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, rng );
bool found = getSubset( m1, m2, ms1, ms2, rng, 10000 );
if( !found )
{
if( iter == 0 )

@ -59,9 +59,33 @@ bool solvePnP( InputArray _opoints, InputArray _ipoints,
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
Mat rvec, tvec;
if( flags != SOLVEPNP_ITERATIVE )
useExtrinsicGuess = false;
if( useExtrinsicGuess )
{
int rtype = _rvec.type(), ttype = _tvec.type();
Size rsize = _rvec.size(), tsize = _tvec.size();
CV_Assert( (rtype == CV_32F || rtype == CV_64F) &&
(ttype == CV_32F || ttype == CV_64F) );
CV_Assert( (rsize == Size(1, 3) || rsize == Size(3, 1)) &&
(tsize == Size(1, 3) || tsize == Size(3, 1)) );
}
else
{
_rvec.create(3, 1, CV_64F);
_tvec.create(3, 1, CV_64F);
Mat cameraMatrix = Mat_<double>(_cameraMatrix.getMat()), distCoeffs = Mat_<double>(_distCoeffs.getMat());
}
rvec = _rvec.getMat();
tvec = _tvec.getMat();
Mat cameraMatrix0 = _cameraMatrix.getMat();
Mat distCoeffs0 = _distCoeffs.getMat();
Mat cameraMatrix = Mat_<double>(cameraMatrix0);
Mat distCoeffs = Mat_<double>(distCoeffs0);
bool result = false;
if (flags == SOLVEPNP_EPNP || flags == SOLVEPNP_DLS || flags == SOLVEPNP_UPNP)
{
@ -69,10 +93,10 @@ bool solvePnP( InputArray _opoints, InputArray _ipoints,
undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
epnp PnP(cameraMatrix, opoints, undistortedPoints);
Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
Mat R;
PnP.compute_pose(R, tvec);
Rodrigues(R, rvec);
return true;
result = true;
}
else if (flags == SOLVEPNP_P3P)
{
@ -81,21 +105,20 @@ bool solvePnP( InputArray _opoints, InputArray _ipoints,
undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
p3p P3Psolver(cameraMatrix);
Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
bool result = P3Psolver.solve(R, tvec, opoints, undistortedPoints);
Mat R;
result = P3Psolver.solve(R, tvec, opoints, undistortedPoints);
if (result)
Rodrigues(R, rvec);
return result;
}
else if (flags == SOLVEPNP_ITERATIVE)
{
CvMat c_objectPoints = opoints, c_imagePoints = ipoints;
CvMat c_cameraMatrix = cameraMatrix, c_distCoeffs = distCoeffs;
CvMat c_rvec = _rvec.getMat(), c_tvec = _tvec.getMat();
CvMat c_rvec = rvec, c_tvec = tvec;
cvFindExtrinsicCameraParams2(&c_objectPoints, &c_imagePoints, &c_cameraMatrix,
c_distCoeffs.rows*c_distCoeffs.cols ? &c_distCoeffs : 0,
&c_rvec, &c_tvec, useExtrinsicGuess );
return true;
result = true;
}
/*else if (flags == SOLVEPNP_DLS)
{
@ -115,17 +138,13 @@ bool solvePnP( InputArray _opoints, InputArray _ipoints,
upnp PnP(cameraMatrix, opoints, ipoints);
Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
double f = PnP.compute_pose(R, tvec);
PnP.compute_pose(R, tvec);
Rodrigues(R, rvec);
if(cameraMatrix.type() == CV_32F)
cameraMatrix.at<float>(0,0) = cameraMatrix.at<float>(1,1) = (float)f;
else
cameraMatrix.at<double>(0,0) = cameraMatrix.at<double>(1,1) = f;
return true;
}*/
else
CV_Error(CV_StsBadArg, "The flags argument must be one of SOLVEPNP_ITERATIVE, SOLVEPNP_P3P, SOLVEPNP_EPNP or SOLVEPNP_DLS");
return false;
return result;
}
class PnPRansacCallback : public PointSetRegistrator::Callback
@ -196,7 +215,16 @@ bool solvePnPRansac(InputArray _opoints, InputArray _ipoints,
OutputArray _inliers, int flags)
{
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
Mat opoints0 = _opoints.getMat(), ipoints0 = _ipoints.getMat();
Mat opoints, ipoints;
if( opoints0.depth() == CV_64F || !opoints0.isContinuous() )
opoints0.convertTo(opoints, CV_32F);
else
opoints = opoints0;
if( ipoints0.depth() == CV_64F || !ipoints0.isContinuous() )
ipoints0.convertTo(ipoints, CV_32F);
else
ipoints = ipoints0;
int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );

@ -1875,3 +1875,73 @@ TEST(Calib3d_ProjectPoints_C, accuracy) { CV_ProjectPointsTest_C test; test.saf
TEST(Calib3d_ProjectPoints_CPP, regression) { CV_ProjectPointsTest_CPP test; test.safe_run(); }
TEST(Calib3d_StereoCalibrate_C, regression) { CV_StereoCalibrationTest_C test; test.safe_run(); }
TEST(Calib3d_StereoCalibrate_CPP, regression) { CV_StereoCalibrationTest_CPP test; test.safe_run(); }
TEST(Calib3d_Triangulate, accuracy)
{
// the testcase from http://code.opencv.org/issues/4334
{
double P1data[] = { 250, 0, 200, 0, 0, 250, 150, 0, 0, 0, 1, 0 };
double P2data[] = { 250, 0, 200, -250, 0, 250, 150, 0, 0, 0, 1, 0 };
Mat P1(3, 4, CV_64F, P1data), P2(3, 4, CV_64F, P2data);
float x1data[] = { 200.f, 0.f };
float x2data[] = { 170.f, 1.f };
float Xdata[] = { 0.f, -5.f, 25/3.f };
Mat x1(2, 1, CV_32F, x1data);
Mat x2(2, 1, CV_32F, x2data);
Mat res0(1, 3, CV_32F, Xdata);
Mat res_, res;
triangulatePoints(P1, P2, x1, x2, res_);
transpose(res_, res_);
convertPointsFromHomogeneous(res_, res);
res = res.reshape(1, 1);
cout << "[1]:" << endl;
cout << "\tres0: " << res0 << endl;
cout << "\tres: " << res << endl;
ASSERT_LE(norm(res, res0, NORM_INF), 1e-1);
}
// another testcase http://code.opencv.org/issues/3461
{
Matx33d K1(6137.147949, 0.000000, 644.974609,
0.000000, 6137.147949, 573.442749,
0.000000, 0.000000, 1.000000);
Matx33d K2(6137.147949, 0.000000, 644.674438,
0.000000, 6137.147949, 573.079834,
0.000000, 0.000000, 1.000000);
Matx34d RT1(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0);
Matx34d RT2(0.998297, 0.0064108, -0.0579766, 143.614334,
-0.0065818, 0.999975, -0.00275888, -5.160085,
0.0579574, 0.00313577, 0.998314, 96.066109);
Matx34d P1 = K1*RT1;
Matx34d P2 = K2*RT2;
float x1data[] = { 438.f, 19.f };
float x2data[] = { 452.363600f, 16.452225f };
float Xdata[] = { -81.049530f, -215.702804f, 2401.645449f };
Mat x1(2, 1, CV_32F, x1data);
Mat x2(2, 1, CV_32F, x2data);
Mat res0(1, 3, CV_32F, Xdata);
Mat res_, res;
triangulatePoints(P1, P2, x1, x2, res_);
transpose(res_, res_);
convertPointsFromHomogeneous(res_, res);
res = res.reshape(1, 1);
cout << "[2]:" << endl;
cout << "\tres0: " << res0 << endl;
cout << "\tres: " << res << endl;
ASSERT_LE(norm(res, res0, NORM_INF), 2);
}
}

@ -1709,4 +1709,21 @@ TEST(Calib3d_ConvertHomogeneoous, accuracy) { CV_ConvertHomogeneousTest test; te
TEST(Calib3d_ComputeEpilines, accuracy) { CV_ComputeEpilinesTest test; test.safe_run(); }
TEST(Calib3d_FindEssentialMat, accuracy) { CV_EssentialMatTest test; test.safe_run(); }
TEST(Calib3d_FindFundamentalMat, correctMatches)
{
double fdata[] = {0, 0, 0, 0, 0, -1, 0, 1, 0};
double p1data[] = {200, 0, 1};
double p2data[] = {170, 0, 1};
Mat F(3, 3, CV_64F, fdata);
Mat p1(1, 1, CV_64FC2, p1data);
Mat p2(1, 1, CV_64FC2, p2data);
Mat np1, np2;
correctMatches(F, p1, p2, np1, np2);
cout << np1 << endl;
cout << np2 << endl;
}
/* End of file. */

@ -568,3 +568,121 @@ void CV_HomographyTest::run(int)
}
TEST(Calib3d_Homography, accuracy) { CV_HomographyTest test; test.safe_run(); }
TEST(Calib3d_Homography, EKcase)
{
float pt1data[] =
{
2.80073029e+002f, 2.39591217e+002f, 2.21912201e+002f, 2.59783997e+002f,
2.16053192e+002f, 2.78826569e+002f, 2.22782532e+002f, 2.82330383e+002f,
2.09924820e+002f, 2.89122559e+002f, 2.11077698e+002f, 2.89384674e+002f,
2.25287689e+002f, 2.88795532e+002f, 2.11180801e+002f, 2.89653503e+002f,
2.24126404e+002f, 2.90466064e+002f, 2.10914429e+002f, 2.90886963e+002f,
2.23439362e+002f, 2.91657715e+002f, 2.24809387e+002f, 2.91891602e+002f,
2.09809082e+002f, 2.92891113e+002f, 2.08771164e+002f, 2.93093231e+002f,
2.23160095e+002f, 2.93259460e+002f, 2.07874023e+002f, 2.93989990e+002f,
2.08963638e+002f, 2.94209839e+002f, 2.23963165e+002f, 2.94479645e+002f,
2.23241791e+002f, 2.94887817e+002f, 2.09438782e+002f, 2.95233337e+002f,
2.08901886e+002f, 2.95762878e+002f, 2.21867981e+002f, 2.95747711e+002f,
2.24195511e+002f, 2.98270905e+002f, 2.09331345e+002f, 3.05958191e+002f,
2.24727875e+002f, 3.07186035e+002f, 2.26718842e+002f, 3.08095795e+002f,
2.25363953e+002f, 3.08200226e+002f, 2.19897797e+002f, 3.13845093e+002f,
2.25013474e+002f, 3.15558777e+002f
};
float pt2data[] =
{
1.84072723e+002f, 1.43591202e+002f, 1.25912483e+002f, 1.63783859e+002f,
2.06439407e+002f, 2.20573929e+002f, 1.43801437e+002f, 1.80703903e+002f,
9.77904129e+000f, 2.49660202e+002f, 1.38458405e+001f, 2.14502701e+002f,
1.50636337e+002f, 2.15597183e+002f, 6.43103180e+001f, 2.51667648e+002f,
1.54952499e+002f, 2.20780014e+002f, 1.26638412e+002f, 2.43040924e+002f,
3.67568909e+002f, 1.83624954e+001f, 1.60657944e+002f, 2.21794052e+002f,
-1.29507828e+000f, 3.32472443e+002f, 8.51442242e+000f, 4.15561554e+002f,
1.27161377e+002f, 1.97260361e+002f, 5.40714645e+000f, 4.90978302e+002f,
2.25571690e+001f, 3.96912415e+002f, 2.95664978e+002f, 7.36064959e+000f,
1.27241104e+002f, 1.98887573e+002f, -1.25569367e+000f, 3.87713226e+002f,
1.04194012e+001f, 4.31495758e+002f, 1.25868874e+002f, 1.99751617e+002f,
1.28195480e+002f, 2.02270355e+002f, 2.23436356e+002f, 1.80489182e+002f,
1.28727692e+002f, 2.11185410e+002f, 2.03336639e+002f, 2.52182083e+002f,
1.29366486e+002f, 2.12201904e+002f, 1.23897598e+002f, 2.17847351e+002f,
1.29015259e+002f, 2.19560623e+002f
};
int npoints = (int)(sizeof(pt1data)/sizeof(pt1data[0])/2);
Mat p1(1, npoints, CV_32FC2, pt1data);
Mat p2(1, npoints, CV_32FC2, pt2data);
Mat mask;
Mat h = findHomography(p1, p2, RANSAC, 0.01, mask);
ASSERT_TRUE(!h.empty());
transpose(mask, mask);
Mat p3, mask2;
int ninliers = countNonZero(mask);
Mat nmask[] = { mask, mask };
merge(nmask, 2, mask2);
perspectiveTransform(p1, p3, h);
mask2 = mask2.reshape(1);
p2 = p2.reshape(1);
p3 = p3.reshape(1);
double err = norm(p2, p3, NORM_INF, mask2);
printf("ninliers: %d, inliers err: %.2g\n", ninliers, err);
ASSERT_GE(ninliers, 10);
ASSERT_LE(err, 0.01);
}
TEST(Calib3d_Homography, fromImages)
{
Mat img_1 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image1.png", 0);
Mat img_2 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image2.png", 0);
Ptr<ORB> orb = ORB::create();
vector<KeyPoint> keypoints_1, keypoints_2;
Mat descriptors_1, descriptors_2;
orb->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1, false );
orb->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2, false );
//-- Step 3: Matching descriptor vectors using Brute Force matcher
BFMatcher matcher(NORM_HAMMING,false);
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance <= 42 )
good_matches.push_back( matches[i]);
}
//-- Localize the model
std::vector<Point2f> pointframe1;
std::vector<Point2f> pointframe2;
for( int i = 0; i < (int)good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
pointframe1.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
pointframe2.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
}
Mat inliers;
Mat H = findHomography( pointframe1, pointframe2, RANSAC,3.0,inliers);
int ninliers = countNonZero(inliers);
printf("nfeatures1 = %d, nfeatures2=%d, good matches=%d, ninliers=%d\n",
(int)keypoints_1.size(), (int)keypoints_2.size(),
(int)good_matches.size(), ninliers);
ASSERT_TRUE(!H.empty());
ASSERT_GE(ninliers, 80);
}

@ -138,7 +138,7 @@ protected:
}
solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec,
false, 500, 0.5, 0.99, inliers, method);
false, 500, 0.5f, 0.99, inliers, method);
bool isTestSuccess = inliers.size() >= points.size()*0.95;
@ -254,10 +254,7 @@ protected:
TEST(Calib3d_SolvePnPRansac, accuracy) { CV_solvePnPRansac_Test test; test.safe_run(); }
TEST(Calib3d_SolvePnP, accuracy) { CV_solvePnP_Test test; test.safe_run(); }
#ifdef HAVE_TBB
TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
TEST(Calib3d_SolvePnPRansac, concurrency)
{
int count = 7*13;
@ -287,12 +284,11 @@ TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
{
// limit concurrency to get deterministic result
cv::theRNG().state = 20121010;
tbb::task_scheduler_init one_thread(1);
theRNG().state = 20121010;
setNumThreads(1);
solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1);
}
if(1)
{
Mat rvec;
Mat tvec;
@ -306,8 +302,8 @@ TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
{
// single thread again
cv::theRNG().state = 20121010;
tbb::task_scheduler_init one_thread(1);
theRNG().state = 20121010;
setNumThreads(1);
solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2);
}
@ -316,6 +312,69 @@ TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
EXPECT_LT(rnorm, 1e-6);
EXPECT_LT(tnorm, 1e-6);
}
TEST(Calib3d_SolvePnP, double_support)
{
Matx33d intrinsics(5.4794130238156129e+002, 0., 2.9835545700043139e+002, 0.,
5.4817724002728005e+002, 2.3062194051986233e+002, 0., 0., 1.);
std::vector<cv::Point3d> points3d;
std::vector<cv::Point2d> points2d;
std::vector<cv::Point3f> points3dF;
std::vector<cv::Point2f> points2dF;
for (int i = 0; i < 10 ; i++)
{
points3d.push_back(cv::Point3d(i,0,0));
points3dF.push_back(cv::Point3d(i,0,0));
points2d.push_back(cv::Point2d(i,0));
points2dF.push_back(cv::Point2d(i,0));
}
Mat R,t, RF, tF;
vector<int> inliers;
solvePnPRansac(points3dF, points2dF, intrinsics, cv::Mat(), RF, tF, true, 100, 8.f, 0.999, inliers, cv::SOLVEPNP_P3P);
solvePnPRansac(points3d, points2d, intrinsics, cv::Mat(), R, t, true, 100, 8.f, 0.999, inliers, cv::SOLVEPNP_P3P);
ASSERT_LE(norm(R, Mat_<double>(RF), NORM_INF), 1e-3);
ASSERT_LE(norm(t, Mat_<double>(tF), NORM_INF), 1e-3);
}
TEST(Calib3d_SolvePnP, translation)
{
Mat cameraIntrinsic = Mat::eye(3,3, CV_32FC1);
vector<float> crvec;
crvec.push_back(0.f);
crvec.push_back(0.f);
crvec.push_back(0.f);
vector<float> ctvec;
ctvec.push_back(100.f);
ctvec.push_back(100.f);
ctvec.push_back(0.f);
vector<Point3f> p3d;
p3d.push_back(Point3f(0,0,0));
p3d.push_back(Point3f(0,0,10));
p3d.push_back(Point3f(0,10,10));
p3d.push_back(Point3f(10,10,10));
p3d.push_back(Point3f(2,5,5));
vector<Point2f> p2d;
projectPoints(p3d, crvec, ctvec, cameraIntrinsic, noArray(), p2d);
Mat rvec;
Mat tvec;
rvec =(Mat_<float>(3,1) << 0, 0, 0);
tvec = (Mat_<float>(3,1) << 100, 100, 0);
solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, true);
ASSERT_TRUE(checkRange(rvec));
ASSERT_TRUE(checkRange(tvec));
rvec =(Mat_<double>(3,1) << 0, 0, 0);
tvec = (Mat_<double>(3,1) << 100, 100, 0);
solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, true);
ASSERT_TRUE(checkRange(rvec));
ASSERT_TRUE(checkRange(tvec));
solvePnP(p3d, p2d, cameraIntrinsic, noArray(), rvec, tvec, false);
ASSERT_TRUE(checkRange(rvec));
ASSERT_TRUE(checkRange(tvec));
}
#endif

@ -2047,7 +2047,7 @@ double cv::solvePoly( InputArray _coeffs0, OutputArray _roots0, int maxIters )
CV_Assert( CV_MAT_DEPTH(ctype) >= CV_32F && CV_MAT_CN(ctype) <= 2 );
CV_Assert( coeffs0.rows == 1 || coeffs0.cols == 1 );
int n = coeffs0.cols + coeffs0.rows - 2;
int n0 = coeffs0.cols + coeffs0.rows - 2, n = n0;
_roots0.create(n, 1, CV_MAKETYPE(cdepth, 2), -1, true, _OutputArray::DEPTH_MASK_FLT);
Mat roots0 = _roots0.getMat();
@ -2063,6 +2063,12 @@ double cv::solvePoly( InputArray _coeffs0, OutputArray _roots0, int maxIters )
coeffs[i] = C(rcoeffs[i], 0);
}
for( ; n > 1; n-- )
{
if( std::abs(coeffs[n].re) + std::abs(coeffs[n].im) > DBL_EPSILON )
break;
}
C p(1, 0), r(1, 1);
for( i = 0; i < n; i++ )
@ -2100,6 +2106,9 @@ double cv::solvePoly( InputArray _coeffs0, OutputArray _roots0, int maxIters )
roots[i].im = 0;
}
for( ; n < n0; n++ )
roots[n+1] = roots[n];
Mat(roots0.size(), CV_64FC2, roots).convertTo(roots0, roots0.type());
return maxDiff;
}

Loading…
Cancel
Save