|
|
|
@ -129,7 +129,6 @@ struct ConvolveBuf |
|
|
|
|
UMat image_block, templ_block, result_data; |
|
|
|
|
|
|
|
|
|
void create(Size image_size, Size templ_size); |
|
|
|
|
static Size estimateBlockSize(Size result_size); |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void ConvolveBuf::create(Size image_size, Size templ_size) |
|
|
|
@ -137,19 +136,26 @@ void ConvolveBuf::create(Size image_size, Size templ_size) |
|
|
|
|
result_size = Size(image_size.width - templ_size.width + 1, |
|
|
|
|
image_size.height - templ_size.height + 1); |
|
|
|
|
|
|
|
|
|
block_size = user_block_size; |
|
|
|
|
if (user_block_size.width == 0 || user_block_size.height == 0) |
|
|
|
|
block_size = estimateBlockSize(result_size); |
|
|
|
|
|
|
|
|
|
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.))); |
|
|
|
|
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.))); |
|
|
|
|
|
|
|
|
|
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1); |
|
|
|
|
const double blockScale = 4.5; |
|
|
|
|
const int minBlockSize = 256; |
|
|
|
|
|
|
|
|
|
block_size.width = cvRound(result_size.width*blockScale); |
|
|
|
|
block_size.width = MAX( block_size.width, minBlockSize - templ_size.width + 1 ); |
|
|
|
|
block_size.width = std::min( block_size.width, result_size.width ); |
|
|
|
|
block_size.height = cvRound(templ_size.height*blockScale); |
|
|
|
|
block_size.height = std::max( block_size.height, minBlockSize - templ_size.height + 1 ); |
|
|
|
|
block_size.height = std::min( block_size.height, result_size.height ); |
|
|
|
|
|
|
|
|
|
dft_size.width = MAX(getOptimalDFTSize(block_size.width + templ_size.width - 1), 2); |
|
|
|
|
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1); |
|
|
|
|
if( dft_size.width <= 0 || dft_size.height <= 0 ) |
|
|
|
|
CV_Error( CV_StsOutOfRange, "the input arrays are too big" ); |
|
|
|
|
|
|
|
|
|
// To avoid wasting time doing small DFTs
|
|
|
|
|
dft_size.width = std::max(dft_size.width, 512); |
|
|
|
|
dft_size.height = std::max(dft_size.height, 512); |
|
|
|
|
// recompute block size
|
|
|
|
|
block_size.width = dft_size.width - templ_size.width + 1; |
|
|
|
|
block_size.width = MIN( block_size.width, result_size.width); |
|
|
|
|
block_size.height = dft_size.height - templ_size.height + 1; |
|
|
|
|
block_size.height = MIN( block_size.height, result_size.height ); |
|
|
|
|
|
|
|
|
|
image_block.create(dft_size, CV_32F); |
|
|
|
|
templ_block.create(dft_size, CV_32F); |
|
|
|
@ -164,21 +170,12 @@ void ConvolveBuf::create(Size image_size, Size templ_size) |
|
|
|
|
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Size ConvolveBuf::estimateBlockSize(Size result_size) |
|
|
|
|
{ |
|
|
|
|
int width = (result_size.width + 2) / 3; |
|
|
|
|
int height = (result_size.height + 2) / 3; |
|
|
|
|
width = std::min(width, result_size.width); |
|
|
|
|
height = std::min(height, result_size.height); |
|
|
|
|
return Size(width, height); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool convolve_dft(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
ConvolveBuf buf; |
|
|
|
|
CV_Assert(_image.type() == CV_32F); |
|
|
|
|
CV_Assert(_templ.type() == CV_32F); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
buf.create(_image.size(), _templ.size()); |
|
|
|
|
_result.create(buf.result_size, CV_32F); |
|
|
|
|
|
|
|
|
@ -202,7 +199,7 @@ static bool convolve_dft(InputArray _image, InputArray _templ, OutputArray _resu |
|
|
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, |
|
|
|
|
templ_block.cols - templ_roi.cols, BORDER_ISOLATED); |
|
|
|
|
|
|
|
|
|
dft(templ_block, templ_spect, 0); |
|
|
|
|
dft(templ_block, templ_spect, 0, templ.rows); |
|
|
|
|
|
|
|
|
|
// Process all blocks of the result matrix
|
|
|
|
|
for (int y = 0; y < result.rows; y += block_size.height) |
|
|
|
|