Merge pull request #12056 from seiko2plus:coreExpandTests

pull/12036/head
Alexander Alekhin 6 years ago
commit dbf3362c4d
  1. 10
      modules/core/include/opencv2/core/hal/intrin.hpp
  2. 93
      modules/core/include/opencv2/core/hal/intrin_avx.hpp
  3. 8
      modules/core/include/opencv2/core/hal/intrin_neon.hpp
  4. 5
      modules/core/include/opencv2/core/hal/intrin_sse.hpp
  5. 5
      modules/core/test/test_intrin.avx2.cpp
  6. 298
      modules/core/test/test_intrin.cpp
  7. 296
      modules/core/test/test_intrin.simd.hpp
  8. 169
      modules/core/test/test_intrin_utils.hpp

@ -165,7 +165,7 @@ using namespace CV_CPU_OPTIMIZATION_HAL_NAMESPACE;
// but some of AVX2 intrinsics get v256_ prefix instead of v_, e.g. v256_load() vs v_load().
// Correspondingly, the wide intrinsics (which are mapped to the "widest"
// available instruction set) will get vx_ prefix
// (and will be mapped to v256_ counterparts) (e.g. vx_load() => v245_load())
// (and will be mapped to v256_ counterparts) (e.g. vx_load() => v256_load())
#if CV_AVX2
#include "opencv2/core/hal/intrin_avx.hpp"
@ -225,14 +225,16 @@ CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
inline vtyp vx_setzero_##short_typ() { return prefix##_setzero_##short_typ(); } \
inline vtyp vx_##loadsfx(const typ* ptr) { return prefix##_##loadsfx(ptr); } \
inline vtyp vx_##loadsfx##_aligned(const typ* ptr) { return prefix##_##loadsfx##_aligned(ptr); } \
inline vtyp vx_##loadsfx##_low(const typ* ptr) { return prefix##_##loadsfx##_low(ptr); } \
inline vtyp vx_##loadsfx##_halves(const typ* ptr0, const typ* ptr1) { return prefix##_##loadsfx##_halves(ptr0, ptr1); } \
inline void vx_store(typ* ptr, const vtyp& v) { return v_store(ptr, v); } \
inline void vx_store_aligned(typ* ptr, const vtyp& v) { return v_store_aligned(ptr, v); }
#define CV_INTRIN_DEFINE_WIDE_LOAD_EXPAND(typ, wtyp, prefix) \
inline wtyp vx_load_expand(const typ* ptr) { return prefix##_load_expand(ptr); }
inline wtyp vx_load_expand(const typ* ptr) { return prefix##_load_expand(ptr); }
#define CV_INTRIN_DEFINE_WIDE_LOAD_EXPAND_Q(typ, qtyp, prefix) \
inline qtyp vx_load_expand_q(const typ* ptr) { return prefix##_load_expand_q(ptr); }
inline qtyp vx_load_expand_q(const typ* ptr) { return prefix##_load_expand_q(ptr); }
#define CV_INTRIN_DEFINE_WIDE_INTRIN_WITH_EXPAND(typ, vtyp, short_typ, wtyp, qtyp, prefix, loadsfx) \
CV_INTRIN_DEFINE_WIDE_INTRIN(typ, vtyp, short_typ, prefix, loadsfx) \
@ -327,7 +329,7 @@ template<typename _Tp> struct V_RegTraits
CV_INTRIN_DEFINE_WIDE_INTRIN_ALL_TYPES(v256)
CV_INTRIN_DEFINE_WIDE_INTRIN(double, v_float64, f64, v256, load)
inline void vx_cleanup() { v256_cleanup(); }
#elif CV_SIMD128
#elif CV_SIMD128 || CV_SIMD128_CPP
typedef v_uint8x16 v_uint8;
typedef v_int8x16 v_int8;
typedef v_uint16x8 v_uint16;

@ -429,6 +429,11 @@ inline v_float16x16 v256_load_f16(const short* ptr)
inline v_float16x16 v256_load_f16_aligned(const short* ptr)
{ return v_float16x16(_mm256_load_si256((const __m256i*)ptr)); }
inline v_float16x16 v256_load_f16_low(const short* ptr)
{ return v_float16x16(v256_load_low(ptr).val); }
inline v_float16x16 v256_load_f16_halves(const short* ptr0, const short* ptr1)
{ return v_float16x16(v256_load_halves(ptr0, ptr1).val); }
inline void v_store(short* ptr, const v_float16x16& a)
{ _mm256_storeu_si256((__m256i*)ptr, a.val); }
inline void v_store_aligned(short* ptr, const v_float16x16& a)
@ -841,93 +846,79 @@ OPENCV_HAL_IMPL_AVX_BIN_FUNC(v_max, v_float64x4, _mm256_max_pd)
template<int imm>
inline v_uint8x32 v_rotate_left(const v_uint8x32& a, const v_uint8x32& b)
{
__m256i swap = _mm256_permute2x128_si256(a.val, b.val, 0x03);
switch(imm)
{
case 0: return a;
case 32: return b;
case 16: return v_uint8x32(swap);
}
enum {IMM_R = (16 - imm) & 0xFF};
enum {IMM_R2 = (32 - imm) & 0xFF};
if (imm < 16) return v_uint8x32(_mm256_alignr_epi8(a.val, swap, 16 - imm));
if (imm < 32) return v_uint8x32(_mm256_alignr_epi8(swap, b.val, 32 - imm));
if (imm == 0) return a;
if (imm == 32) return b;
if (imm > 32) return v_uint8x32();
return v_uint8x32();
__m256i swap = _mm256_permute2x128_si256(a.val, b.val, 0x03);
if (imm == 16) return v_uint8x32(swap);
if (imm < 16) return v_uint8x32(_mm256_alignr_epi8(a.val, swap, IMM_R));
return v_uint8x32(_mm256_alignr_epi8(swap, b.val, IMM_R2)); // imm < 32
}
template<int imm>
inline v_uint8x32 v_rotate_right(const v_uint8x32& a, const v_uint8x32& b)
{
__m256i swap = _mm256_permute2x128_si256(a.val, b.val, 0x21);
enum {IMM_L = (imm - 16) & 0xFF};
switch(imm)
{
case 0: return a;
case 32: return b;
case 16: return v_uint8x32(swap);
}
if (imm == 0) return a;
if (imm == 32) return b;
if (imm > 32) return v_uint8x32();
__m256i swap = _mm256_permute2x128_si256(a.val, b.val, 0x21);
if (imm == 16) return v_uint8x32(swap);
if (imm < 16) return v_uint8x32(_mm256_alignr_epi8(swap, a.val, imm));
if (imm < 32) return v_uint8x32(_mm256_alignr_epi8(b.val, swap, imm - 16));
return v_uint8x32();
return v_uint8x32(_mm256_alignr_epi8(b.val, swap, IMM_L));
}
template<int imm>
inline v_uint8x32 v_rotate_left(const v_uint8x32& a)
{
v_uint8x32 res;
enum {IMM_L = (imm - 16) & 0xFF};
enum {IMM_R = (16 - imm) & 0xFF};
if (imm == 0) return a;
if (imm > 32) return v_uint8x32();
// ESAC control[3] ? [127:0] = 0
__m256i swapz = _mm256_permute2x128_si256(a.val, a.val, _MM_SHUFFLE(0, 0, 2, 0));
if (imm == 0)
return a;
if (imm == 16)
res.val = swapz;
else if (imm < 16)
res.val = _mm256_alignr_epi8(a.val, swapz, 16 - imm);
else if (imm < 32)
res.val = _mm256_slli_si256(swapz, imm - 16);
else
return v_uint8x32();
return res;
if (imm == 16) return v_uint8x32(swapz);
if (imm < 16) return v_uint8x32(_mm256_alignr_epi8(a.val, swapz, IMM_R));
return v_uint8x32(_mm256_slli_si256(swapz, IMM_L));
}
template<int imm>
inline v_uint8x32 v_rotate_right(const v_uint8x32& a)
{
v_uint8x32 res;
enum {IMM_L = (imm - 16) & 0xFF};
if (imm == 0) return a;
if (imm > 32) return v_uint8x32();
// ESAC control[3] ? [127:0] = 0
__m256i swapz = _mm256_permute2x128_si256(a.val, a.val, _MM_SHUFFLE(2, 0, 0, 1));
if (imm == 0)
return a;
if (imm == 16)
res.val = swapz;
else if (imm < 16)
res.val = _mm256_alignr_epi8(swapz, a.val, imm);
else if (imm < 32)
res.val = _mm256_srli_si256(swapz, imm - 16);
else
return v_uint8x32();
return res;
if (imm == 16) return v_uint8x32(swapz);
if (imm < 16) return v_uint8x32(_mm256_alignr_epi8(swapz, a.val, imm));
return v_uint8x32(_mm256_srli_si256(swapz, IMM_L));
}
#define OPENCV_HAL_IMPL_AVX_ROTATE_CAST(intrin, _Tpvec, cast) \
template<int imm> \
inline _Tpvec intrin(const _Tpvec& a, const _Tpvec& b) \
{ \
const int w = sizeof(typename _Tpvec::lane_type); \
v_uint8x32 ret = intrin<imm*w>(v_reinterpret_as_u8(a), \
enum {IMMxW = imm * sizeof(typename _Tpvec::lane_type)}; \
v_uint8x32 ret = intrin<IMMxW>(v_reinterpret_as_u8(a), \
v_reinterpret_as_u8(b)); \
return _Tpvec(cast(ret.val)); \
} \
template<int imm> \
inline _Tpvec intrin(const _Tpvec& a) \
{ \
const int w = sizeof(typename _Tpvec::lane_type); \
v_uint8x32 ret = intrin<imm*w>(v_reinterpret_as_u8(a)); \
enum {IMMxW = imm * sizeof(typename _Tpvec::lane_type)}; \
v_uint8x32 ret = intrin<IMMxW>(v_reinterpret_as_u8(a)); \
return _Tpvec(cast(ret.val)); \
}

@ -319,6 +319,9 @@ static inline void cv_vst1_f16(void* ptr, float16x4_t a)
#endif
}
#ifndef vdup_n_f16
#define vdup_n_f16(v) (float16x4_t){v, v, v, v}
#endif
struct v_float16x8
{
@ -893,6 +896,11 @@ inline v_float16x8 v_load_f16(const short* ptr)
inline v_float16x8 v_load_f16_aligned(const short* ptr)
{ return v_float16x8(cv_vld1q_f16(ptr)); }
inline v_float16x8 v_load_f16_low(const short* ptr)
{ return v_float16x8(vcombine_f16(cv_vld1_f16(ptr), vdup_n_f16((float16_t)0))); }
inline v_float16x8 v_load_f16_halves(const short* ptr0, const short* ptr1)
{ return v_float16x8(vcombine_f16(cv_vld1_f16(ptr0), cv_vld1_f16(ptr1))); }
inline void v_store(short* ptr, const v_float16x8& a)
{ cv_vst1q_f16(ptr, a.val); }
inline void v_store_aligned(short* ptr, const v_float16x8& a)

@ -1330,6 +1330,11 @@ inline v_float16x8 v_load_f16(const short* ptr)
inline v_float16x8 v_load_f16_aligned(const short* ptr)
{ return v_float16x8(_mm_load_si128((const __m128i*)ptr)); }
inline v_float16x8 v_load_f16_low(const short* ptr)
{ return v_float16x8(v_load_low(ptr).val); }
inline v_float16x8 v_load_f16_halves(const short* ptr0, const short* ptr1)
{ return v_float16x8(v_load_halves(ptr0, ptr1).val); }
inline void v_store(short* ptr, const v_float16x8& a)
{ _mm_storeu_si128((__m128i*)ptr, a.val); }
inline void v_store_aligned(short* ptr, const v_float16x8& a)

@ -0,0 +1,5 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "test_intrin.simd.hpp"

@ -2,249 +2,101 @@
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "test_intrin.simd.hpp"
#include "test_intrin_utils.hpp"
#define CV_CPU_SIMD_FILENAME "test_intrin_utils.hpp"
#define CV_CPU_SIMD_FILENAME "test_intrin.simd.hpp"
#define CV_CPU_DISPATCH_MODE FP16
#include "opencv2/core/private/cv_cpu_include_simd_declarations.hpp"
using namespace cv;
#define CV_CPU_DISPATCH_MODE AVX2
#include "opencv2/core/private/cv_cpu_include_simd_declarations.hpp"
namespace opencv_test { namespace hal {
using namespace CV_CPU_OPTIMIZATION_NAMESPACE;
//============= 8-bit integer =====================================================================
TEST(hal_intrin, uint8x16) {
TheTest<v_uint8x16>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_expand_q()
.test_addsub()
.test_addsub_wrap()
.test_cmp()
.test_logic()
.test_min_max()
.test_absdiff()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
.test_pack_u<1>().test_pack_u<2>().test_pack_u<3>().test_pack_u<8>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
;
}
TEST(hal_intrin, uint8x16)
{ test_hal_intrin_uint8(); }
TEST(hal_intrin, int8x16) {
TheTest<v_int8x16>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_expand_q()
.test_addsub()
.test_addsub_wrap()
.test_cmp()
.test_logic()
.test_min_max()
.test_absdiff()
.test_abs()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
;
}
TEST(hal_intrin, int8x16)
{ test_hal_intrin_int8(); }
//============= 16-bit integer =====================================================================
TEST(hal_intrin, uint16x8) {
TheTest<v_uint16x8>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_addsub_wrap()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
.test_pack_u<1>().test_pack_u<2>().test_pack_u<7>().test_pack_u<16>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
;
}
TEST(hal_intrin, uint16x8)
{ test_hal_intrin_uint16(); }
TEST(hal_intrin, int16x8) {
TheTest<v_int16x8>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_addsub_wrap()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_dot_prod()
.test_logic()
.test_min_max()
.test_absdiff()
.test_abs()
.test_reduce()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
;
}
TEST(hal_intrin, int16x8)
{ test_hal_intrin_int16(); }
//============= 32-bit integer =====================================================================
TEST(hal_intrin, uint32x4) {
TheTest<v_uint32x4>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
.test_transpose()
;
}
TEST(hal_intrin, int32x4)
{ test_hal_intrin_int32(); }
TEST(hal_intrin, int32x4) {
TheTest<v_int32x4>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_mul()
.test_abs()
.test_cmp()
.test_popcount()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
.test_float_cvt32()
.test_float_cvt64()
.test_transpose()
;
}
TEST(hal_intrin, uint32x4)
{ test_hal_intrin_uint32(); }
//============= 64-bit integer =====================================================================
TEST(hal_intrin, uint64x2) {
TheTest<v_uint64x2>()
.test_loadstore()
.test_addsub()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_extract<0>().test_extract<1>()
.test_rotate<0>().test_rotate<1>()
;
}
TEST(hal_intrin, uint64x2)
{ test_hal_intrin_uint64(); }
TEST(hal_intrin, int64x2) {
TheTest<v_int64x2>()
.test_loadstore()
.test_addsub()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_extract<0>().test_extract<1>()
.test_rotate<0>().test_rotate<1>()
;
}
TEST(hal_intrin, int64x2)
{ test_hal_intrin_int64(); }
//============= Floating point =====================================================================
TEST(hal_intrin, float32x4) {
TheTest<v_float32x4>()
.test_loadstore()
.test_interleave()
.test_interleave_2channel()
.test_addsub()
.test_mul()
.test_div()
.test_cmp()
.test_sqrt_abs()
.test_min_max()
.test_float_absdiff()
.test_reduce()
.test_mask()
.test_unpack()
.test_float_math()
.test_float_cvt64()
.test_matmul()
.test_transpose()
.test_reduce_sum4()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
;
}
TEST(hal_intrin, float32x4)
{ test_hal_intrin_float32(); }
#if CV_SIMD128_64F
TEST(hal_intrin, float64x2) {
TheTest<v_float64x2>()
.test_loadstore()
.test_addsub()
.test_mul()
.test_div()
.test_cmp()
.test_sqrt_abs()
.test_min_max()
.test_float_absdiff()
.test_mask()
.test_unpack()
.test_float_math()
.test_float_cvt32()
.test_extract<0>().test_extract<1>()
.test_rotate<0>().test_rotate<1>()
;
}
#endif
TEST(hal_intrin, float64x2)
{ test_hal_intrin_float64(); }
TEST(hal_intrin,float16)
TEST(hal_intrin, float16x8)
{
CV_CPU_CALL_FP16_(test_hal_intrin_float16, ());
throw SkipTestException("Unsupported hardware: FP16 is not available");
}
}}
#define DISPATCH_SIMD_MODES AVX2
#define DISPATCH_SIMD_NAME "SIMD256"
#define DISPATCH_SIMD(fun) \
do { \
CV_CPU_DISPATCH(fun, (), DISPATCH_SIMD_MODES); \
throw SkipTestException( \
"Unsupported hardware: " \
DISPATCH_SIMD_NAME \
" is not available" \
); \
} while(0)
TEST(hal_intrin256, uint8x32)
{ DISPATCH_SIMD(test_hal_intrin_uint8); }
TEST(hal_intrin256, int8x32)
{ DISPATCH_SIMD(test_hal_intrin_int8); }
TEST(hal_intrin256, uint16x16)
{ DISPATCH_SIMD(test_hal_intrin_uint16); }
TEST(hal_intrin256, int16x16)
{ DISPATCH_SIMD(test_hal_intrin_int16); }
TEST(hal_intrin256, uint32x8)
{ DISPATCH_SIMD(test_hal_intrin_uint32); }
TEST(hal_intrin256, int32x8)
{ DISPATCH_SIMD(test_hal_intrin_int32); }
TEST(hal_intrin256, uint64x4)
{ DISPATCH_SIMD(test_hal_intrin_uint64); }
TEST(hal_intrin256, int64x4)
{ DISPATCH_SIMD(test_hal_intrin_int64); }
TEST(hal_intrin256, float32x8)
{ DISPATCH_SIMD(test_hal_intrin_float32); }
TEST(hal_intrin256, float64x4)
{ DISPATCH_SIMD(test_hal_intrin_float64); }
TEST(hal_intrin256, float16x16)
{
if (!CV_CPU_HAS_SUPPORT_FP16)
throw SkipTestException("Unsupported hardware: FP16 is not available");
DISPATCH_SIMD(test_hal_intrin_float16);
}
}} // namespace

@ -0,0 +1,296 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "test_intrin_utils.hpp"
namespace opencv_test { namespace hal {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
void test_hal_intrin_uint8();
void test_hal_intrin_int8();
void test_hal_intrin_uint16();
void test_hal_intrin_int16();
void test_hal_intrin_uint32();
void test_hal_intrin_int32();
void test_hal_intrin_uint64();
void test_hal_intrin_int64();
void test_hal_intrin_float32();
void test_hal_intrin_float64();
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
//============= 8-bit integer =====================================================================
void test_hal_intrin_uint8()
{
TheTest<v_uint8>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_expand_q()
.test_addsub()
.test_addsub_wrap()
.test_cmp()
.test_logic()
.test_min_max()
.test_absdiff()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
.test_pack_u<1>().test_pack_u<2>().test_pack_u<3>().test_pack_u<8>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
;
#if CV_SIMD256
TheTest<v_uint8>()
.test_pack<9>().test_pack<10>().test_pack<13>().test_pack<15>()
.test_pack_u<9>().test_pack_u<10>().test_pack_u<13>().test_pack_u<15>()
.test_extract<16>().test_extract<17>().test_extract<23>().test_extract<31>()
.test_rotate<16>().test_rotate<17>().test_rotate<23>().test_rotate<31>()
;
#endif
}
void test_hal_intrin_int8()
{
TheTest<v_int8>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_expand_q()
.test_addsub()
.test_addsub_wrap()
.test_cmp()
.test_logic()
.test_min_max()
.test_absdiff()
.test_abs()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
;
}
//============= 16-bit integer =====================================================================
void test_hal_intrin_uint16()
{
TheTest<v_uint16>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_addsub_wrap()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
.test_pack_u<1>().test_pack_u<2>().test_pack_u<7>().test_pack_u<16>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
;
}
void test_hal_intrin_int16()
{
TheTest<v_int16>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_addsub_wrap()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_dot_prod()
.test_logic()
.test_min_max()
.test_absdiff()
.test_abs()
.test_reduce()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
;
}
//============= 32-bit integer =====================================================================
void test_hal_intrin_uint32()
{
TheTest<v_uint32>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_popcount()
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
.test_transpose()
;
}
void test_hal_intrin_int32()
{
TheTest<v_int32>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_mul()
.test_abs()
.test_cmp()
.test_popcount()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
.test_float_cvt32()
.test_float_cvt64()
.test_transpose()
;
}
//============= 64-bit integer =====================================================================
void test_hal_intrin_uint64()
{
TheTest<v_uint64>()
.test_loadstore()
.test_addsub()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_extract<0>().test_extract<1>()
.test_rotate<0>().test_rotate<1>()
;
}
void test_hal_intrin_int64()
{
TheTest<v_int64>()
.test_loadstore()
.test_addsub()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_extract<0>().test_extract<1>()
.test_rotate<0>().test_rotate<1>()
;
}
//============= Floating point =====================================================================
void test_hal_intrin_float32()
{
TheTest<v_float32>()
.test_loadstore()
.test_interleave()
.test_interleave_2channel()
.test_addsub()
.test_mul()
.test_div()
.test_cmp()
.test_sqrt_abs()
.test_min_max()
.test_float_absdiff()
.test_reduce()
.test_mask()
.test_unpack()
.test_float_math()
.test_float_cvt64()
.test_matmul()
.test_transpose()
.test_reduce_sum4()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
;
#if CV_SIMD256
TheTest<v_float32>()
.test_extract<4>().test_extract<5>().test_extract<6>().test_extract<7>()
.test_rotate<4>().test_rotate<5>().test_rotate<6>().test_rotate<7>()
;
#endif
}
void test_hal_intrin_float64()
{
#if CV_SIMD_64F
TheTest<v_float64>()
.test_loadstore()
.test_addsub()
.test_mul()
.test_div()
.test_cmp()
.test_sqrt_abs()
.test_min_max()
.test_float_absdiff()
.test_mask()
.test_unpack()
.test_float_math()
.test_float_cvt32()
.test_extract<0>().test_extract<1>()
.test_rotate<0>().test_rotate<1>()
;
#if CV_SIMD256
TheTest<v_float64>()
.test_extract<2>().test_extract<3>()
.test_rotate<2>().test_rotate<3>()
;
#endif //CV_SIMD256
#endif
}
#if CV_FP16 && CV_SIMD_WIDTH > 16
void test_hal_intrin_float16()
{
TheTest<v_float16>()
.test_loadstore_fp16()
.test_float_cvt_fp16()
;
}
#endif
#endif //CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
CV_CPU_OPTIMIZATION_NAMESPACE_END
}} //namespace

@ -13,6 +13,27 @@ void test_hal_intrin_float16();
template <typename R> struct Data;
template <int N> struct initializer;
template <> struct initializer<64>
{
template <typename R> static R init(const Data<R> & d)
{
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15],
d[16], d[17], d[18], d[19], d[20], d[21], d[22], d[23], d[24], d[25], d[26], d[27], d[28], d[29], d[30], d[31],
d[32], d[33], d[34], d[35], d[36], d[37], d[38], d[39], d[40], d[41], d[42], d[43], d[44], d[45], d[46], d[47],
d[48], d[49], d[50], d[51], d[52], d[53], d[54], d[55], d[56], d[57], d[58], d[59], d[50], d[51], d[52], d[53],
d[54], d[55], d[56], d[57], d[58], d[59], d[60], d[61], d[62], d[63]);
}
};
template <> struct initializer<32>
{
template <typename R> static R init(const Data<R> & d)
{
return R(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15],
d[16], d[17], d[18], d[19], d[20], d[21], d[22], d[23], d[24], d[25], d[26], d[27], d[28], d[29], d[30], d[31]);
}
};
template <> struct initializer<16>
{
template <typename R> static R init(const Data<R> & d)
@ -125,6 +146,17 @@ template <typename R> struct Data
{
return d + R::nlanes / 2;
}
LaneType sum(int s, int c)
{
LaneType res = 0;
for (int i = s; i < s + c; ++i)
res += d[i];
return res;
}
LaneType sum()
{
return sum(0, R::nlanes);
}
bool operator==(const Data<R> & other) const
{
for (int i = 0; i < R::nlanes; ++i)
@ -147,13 +179,12 @@ template <typename R> struct Data
return false;
return true;
}
LaneType d[R::nlanes];
};
template<typename R> struct AlignedData
{
Data<R> CV_DECL_ALIGNED(16) a; // aligned
Data<R> CV_DECL_ALIGNED(CV_SIMD_WIDTH) a; // aligned
char dummy;
Data<R> u; // unaligned
};
@ -207,22 +238,22 @@ template<typename R> struct TheTest
AlignedData<R> out;
// check if addresses are aligned and unaligned respectively
EXPECT_EQ((size_t)0, (size_t)&data.a.d % 16);
EXPECT_NE((size_t)0, (size_t)&data.u.d % 16);
EXPECT_EQ((size_t)0, (size_t)&out.a.d % 16);
EXPECT_NE((size_t)0, (size_t)&out.u.d % 16);
EXPECT_EQ((size_t)0, (size_t)&data.a.d % CV_SIMD_WIDTH);
EXPECT_NE((size_t)0, (size_t)&data.u.d % CV_SIMD_WIDTH);
EXPECT_EQ((size_t)0, (size_t)&out.a.d % CV_SIMD_WIDTH);
EXPECT_NE((size_t)0, (size_t)&out.u.d % CV_SIMD_WIDTH);
// check some initialization methods
R r1 = data.a;
R r2 = v_load(data.u.d);
R r3 = v_load_aligned(data.a.d);
R r2 = vx_load(data.u.d);
R r3 = vx_load_aligned(data.a.d);
R r4(r2);
EXPECT_EQ(data.a[0], r1.get0());
EXPECT_EQ(data.u[0], r2.get0());
EXPECT_EQ(data.a[0], r3.get0());
EXPECT_EQ(data.u[0], r4.get0());
R r_low = v_load_low((LaneType*)data.u.d);
R r_low = vx_load_low((LaneType*)data.u.d);
EXPECT_EQ(data.u[0], r_low.get0());
v_store(out.u.d, r_low);
for (int i = 0; i < R::nlanes/2; ++i)
@ -230,7 +261,7 @@ template<typename R> struct TheTest
EXPECT_EQ((LaneType)data.u[i], (LaneType)out.u[i]);
}
R r_low_align8byte = v_load_low((LaneType*)((char*)data.u.d + 8));
R r_low_align8byte = vx_load_low((LaneType*)((char*)data.u.d + (CV_SIMD_WIDTH / 2)));
EXPECT_EQ(data.u[R::nlanes/2], r_low_align8byte.get0());
v_store(out.u.d, r_low_align8byte);
for (int i = 0; i < R::nlanes/2; ++i)
@ -255,7 +286,7 @@ template<typename R> struct TheTest
// check halves load correctness
res.clear();
R r6 = v_load_halves(d.d, d.mid());
R r6 = vx_load_halves(d.d, d.mid());
v_store(res.d, r6);
EXPECT_EQ(d, res);
@ -270,17 +301,17 @@ template<typename R> struct TheTest
}
// reinterpret_as
v_uint8x16 vu8 = v_reinterpret_as_u8(r1); out.a.clear(); v_store((uchar*)out.a.d, vu8); EXPECT_EQ(data.a, out.a);
v_int8x16 vs8 = v_reinterpret_as_s8(r1); out.a.clear(); v_store((schar*)out.a.d, vs8); EXPECT_EQ(data.a, out.a);
v_uint16x8 vu16 = v_reinterpret_as_u16(r1); out.a.clear(); v_store((ushort*)out.a.d, vu16); EXPECT_EQ(data.a, out.a);
v_int16x8 vs16 = v_reinterpret_as_s16(r1); out.a.clear(); v_store((short*)out.a.d, vs16); EXPECT_EQ(data.a, out.a);
v_uint32x4 vu32 = v_reinterpret_as_u32(r1); out.a.clear(); v_store((unsigned*)out.a.d, vu32); EXPECT_EQ(data.a, out.a);
v_int32x4 vs32 = v_reinterpret_as_s32(r1); out.a.clear(); v_store((int*)out.a.d, vs32); EXPECT_EQ(data.a, out.a);
v_uint64x2 vu64 = v_reinterpret_as_u64(r1); out.a.clear(); v_store((uint64*)out.a.d, vu64); EXPECT_EQ(data.a, out.a);
v_int64x2 vs64 = v_reinterpret_as_s64(r1); out.a.clear(); v_store((int64*)out.a.d, vs64); EXPECT_EQ(data.a, out.a);
v_float32x4 vf32 = v_reinterpret_as_f32(r1); out.a.clear(); v_store((float*)out.a.d, vf32); EXPECT_EQ(data.a, out.a);
#if CV_SIMD128_64F
v_float64x2 vf64 = v_reinterpret_as_f64(r1); out.a.clear(); v_store((double*)out.a.d, vf64); EXPECT_EQ(data.a, out.a);
v_uint8 vu8 = v_reinterpret_as_u8(r1); out.a.clear(); v_store((uchar*)out.a.d, vu8); EXPECT_EQ(data.a, out.a);
v_int8 vs8 = v_reinterpret_as_s8(r1); out.a.clear(); v_store((schar*)out.a.d, vs8); EXPECT_EQ(data.a, out.a);
v_uint16 vu16 = v_reinterpret_as_u16(r1); out.a.clear(); v_store((ushort*)out.a.d, vu16); EXPECT_EQ(data.a, out.a);
v_int16 vs16 = v_reinterpret_as_s16(r1); out.a.clear(); v_store((short*)out.a.d, vs16); EXPECT_EQ(data.a, out.a);
v_uint32 vu32 = v_reinterpret_as_u32(r1); out.a.clear(); v_store((unsigned*)out.a.d, vu32); EXPECT_EQ(data.a, out.a);
v_int32 vs32 = v_reinterpret_as_s32(r1); out.a.clear(); v_store((int*)out.a.d, vs32); EXPECT_EQ(data.a, out.a);
v_uint64 vu64 = v_reinterpret_as_u64(r1); out.a.clear(); v_store((uint64*)out.a.d, vu64); EXPECT_EQ(data.a, out.a);
v_int64 vs64 = v_reinterpret_as_s64(r1); out.a.clear(); v_store((int64*)out.a.d, vs64); EXPECT_EQ(data.a, out.a);
v_float32 vf32 = v_reinterpret_as_f32(r1); out.a.clear(); v_store((float*)out.a.d, vf32); EXPECT_EQ(data.a, out.a);
#if CV_SIMD_64F
v_float64 vf64 = v_reinterpret_as_f64(r1); out.a.clear(); v_store((double*)out.a.d, vf64); EXPECT_EQ(data.a, out.a);
#endif
return *this;
@ -357,7 +388,7 @@ template<typename R> struct TheTest
Data<R> dataA;
R a = dataA;
Data<Rx2> resB = v_load_expand(dataA.d);
Data<Rx2> resB = vx_load_expand(dataA.d);
Rx2 c, d;
v_expand(a, c, d);
@ -378,7 +409,7 @@ template<typename R> struct TheTest
{
typedef typename V_RegTraits<R>::q_reg Rx4;
Data<R> data;
Data<Rx4> out = v_load_expand_q(data.d);
Data<Rx4> out = vx_load_expand_q(data.d);
const int n = Rx4::nlanes;
for (int i = 0; i < n; ++i)
EXPECT_EQ(data[i], out[i]);
@ -610,7 +641,13 @@ template<typename R> struct TheTest
TheTest & test_popcount()
{
static unsigned popcountTable[] = {0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 22, 25, 28, 32, 33};
static unsigned popcountTable[] = {
0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 22, 25, 28, 32, 33,
35, 37, 40, 42, 45, 48, 52, 54, 57, 60, 64, 67, 71, 75, 80, 81,
83, 85, 88, 90, 93, 96, 100, 102, 105, 108, 112, 115, 119, 123,
128, 130, 133, 136, 140, 143, 147, 151, 156, 159, 163, 167, 172,
176, 181, 186, 192, 193
};
Data<R> dataA;
R a = dataA;
@ -918,7 +955,7 @@ template<typename R> struct TheTest
TheTest & test_float_cvt32()
{
typedef v_float32x4 Rt;
typedef v_float32 Rt;
Data<R> dataA;
dataA *= 1.1;
R a = dataA;
@ -934,8 +971,8 @@ template<typename R> struct TheTest
TheTest & test_float_cvt64()
{
#if CV_SIMD128_64F
typedef v_float64x2 Rt;
#if CV_SIMD_64F
typedef v_float64 Rt;
Data<R> dataA;
dataA *= 1.1;
R a = dataA;
@ -965,23 +1002,29 @@ template<typename R> struct TheTest
R v = dataV, a = dataA, b = dataB, c = dataC, d = dataD;
Data<R> res = v_matmul(v, a, b, c, d);
for (int i = 0; i < R::nlanes; ++i)
for (int i = 0; i < R::nlanes; i += 4)
{
for (int j = i; j < i + 4; ++j)
{
LaneType val = dataV[0] * dataA[i]
+ dataV[1] * dataB[i]
+ dataV[2] * dataC[i]
+ dataV[3] * dataD[i];
EXPECT_DOUBLE_EQ(val, res[i]);
LaneType val = dataV[i] * dataA[j]
+ dataV[i + 1] * dataB[j]
+ dataV[i + 2] * dataC[j]
+ dataV[i + 3] * dataD[j];
EXPECT_COMPARE_EQ(val, res[j]);
}
}
Data<R> resAdd = v_matmuladd(v, a, b, c, d);
for (int i = 0; i < R::nlanes; ++i)
for (int i = 0; i < R::nlanes; i += 4)
{
LaneType val = dataV[0] * dataA[i]
+ dataV[1] * dataB[i]
+ dataV[2] * dataC[i]
+ dataD[i];
EXPECT_DOUBLE_EQ(val, resAdd[i]);
for (int j = i; j < i + 4; ++j)
{
LaneType val = dataV[i] * dataA[j]
+ dataV[i + 1] * dataB[j]
+ dataV[i + 2] * dataC[j]
+ dataD[j];
EXPECT_COMPARE_EQ(val, resAdd[j]);
}
}
return *this;
}
@ -998,30 +1041,36 @@ template<typename R> struct TheTest
e, f, g, h);
Data<R> res[4] = {e, f, g, h};
for (int i = 0; i < R::nlanes; ++i)
for (int i = 0; i < R::nlanes; i += 4)
{
for (int j = 0; j < 4; ++j)
{
EXPECT_EQ(dataA[i], res[i][0]);
EXPECT_EQ(dataB[i], res[i][1]);
EXPECT_EQ(dataC[i], res[i][2]);
EXPECT_EQ(dataD[i], res[i][3]);
EXPECT_EQ(dataA[i + j], res[j][i]);
EXPECT_EQ(dataB[i + j], res[j][i + 1]);
EXPECT_EQ(dataC[i + j], res[j][i + 2]);
EXPECT_EQ(dataD[i + j], res[j][i + 3]);
}
}
return *this;
}
TheTest & test_reduce_sum4()
{
R a(0.1f, 0.02f, 0.003f, 0.0004f);
R b(1, 20, 300, 4000);
R c(10, 2, 0.3f, 0.04f);
R d(1, 2, 3, 4);
Data<R> dataA, dataB, dataC, dataD;
dataB *= 0.01f;
dataC *= 0.001f;
dataD *= 0.002f;
R sum = v_reduce_sum4(a, b, c, d);
R a = dataA, b = dataB, c = dataC, d = dataD;
Data<R> res = v_reduce_sum4(a, b, c, d);
Data<R> res = sum;
EXPECT_EQ(0.1234f, res[0]);
EXPECT_EQ(4321.0f, res[1]);
EXPECT_EQ(12.34f, res[2]);
EXPECT_EQ(10.0f, res[3]);
for (int i = 0; i < R::nlanes; i += 4)
{
EXPECT_COMPARE_EQ(dataA.sum(i, 4), res[i]);
EXPECT_COMPARE_EQ(dataB.sum(i, 4), res[i + 1]);
EXPECT_COMPARE_EQ(dataC.sum(i, 4), res[i + 2]);
EXPECT_COMPARE_EQ(dataD.sum(i, 4), res[i + 3]);
}
return *this;
}
@ -1032,14 +1081,14 @@ template<typename R> struct TheTest
AlignedData<R> out;
// check if addresses are aligned and unaligned respectively
EXPECT_EQ((size_t)0, (size_t)&data.a.d % 16);
EXPECT_NE((size_t)0, (size_t)&data.u.d % 16);
EXPECT_EQ((size_t)0, (size_t)&out.a.d % 16);
EXPECT_NE((size_t)0, (size_t)&out.u.d % 16);
EXPECT_EQ((size_t)0, (size_t)&data.a.d % CV_SIMD_WIDTH);
EXPECT_NE((size_t)0, (size_t)&data.u.d % CV_SIMD_WIDTH);
EXPECT_EQ((size_t)0, (size_t)&out.a.d % CV_SIMD_WIDTH);
EXPECT_NE((size_t)0, (size_t)&out.u.d % CV_SIMD_WIDTH);
// check some initialization methods
R r1 = data.u;
R r2 = v_load_f16(data.a.d);
R r2 = vx_load_f16(data.a.d);
R r3(r2);
EXPECT_EQ(data.u[0], r1.get0());
EXPECT_EQ(data.a[0], r2.get0());

Loading…
Cancel
Save