diff --git a/modules/gapi/samples/privacy_masking_camera.cpp b/modules/gapi/samples/privacy_masking_camera.cpp new file mode 100644 index 0000000000..7cb6e22bd9 --- /dev/null +++ b/modules/gapi/samples/privacy_masking_camera.cpp @@ -0,0 +1,216 @@ +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +const std::string about = + "This is an OpenCV-based version of Privacy Masking Camera example"; +const std::string keys = + "{ h help | | Print this help message }" + "{ input | | Path to the input video file }" + "{ platm | vehicle-license-plate-detection-barrier-0106.xml | Path to OpenVINO IE vehicle/plate detection model (.xml) }" + "{ platd | CPU | Target device for vehicle/plate detection model (e.g. CPU, GPU, VPU, ...) }" + "{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }" + "{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }" + "{ trad | false | Run processing in a traditional (non-pipelined) way }" + "{ noshow | false | Don't display UI (improves performance) }"; + +namespace { + +std::string weights_path(const std::string &model_path) { + const auto EXT_LEN = 4u; + const auto sz = model_path.size(); + CV_Assert(sz > EXT_LEN); + + auto ext = model_path.substr(sz - EXT_LEN); + + std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ return std::tolower(c); }); + CV_Assert(ext == ".xml"); + + return model_path.substr(0u, sz - EXT_LEN) + ".bin"; +} +} // namespace + +namespace custom { + +G_API_NET(VehLicDetector, , "vehicle-license-plate-detector"); +G_API_NET(FaceDetector, , "face-detector"); + +using GDetections = cv::GArray; + +G_API_OP(ParseSSD, , "custom.privacy_masking.postproc") { + static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GMatDesc &, int) { + return cv::empty_array_desc(); + } +}; + +using GPrims = cv::GArray; + +G_API_OP(ToMosaic, , "custom.privacy_masking.to_mosaic") { + static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GArrayDesc &) { + return cv::empty_array_desc(); + } +}; + +GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) { + static void run(const cv::Mat &in_ssd_result, + const cv::Mat &in_frame, + const int filter_label, + std::vector &out_objects) { + const auto &in_ssd_dims = in_ssd_result.size; + CV_Assert(in_ssd_dims.dims() == 4u); + + const int MAX_PROPOSALS = in_ssd_dims[2]; + const int OBJECT_SIZE = in_ssd_dims[3]; + CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size + + const cv::Size upscale = in_frame.size(); + const cv::Rect surface({0,0}, upscale); + + out_objects.clear(); + + const float *data = in_ssd_result.ptr(); + for (int i = 0; i < MAX_PROPOSALS; i++) { + const float image_id = data[i * OBJECT_SIZE + 0]; + const float label = data[i * OBJECT_SIZE + 1]; + const float confidence = data[i * OBJECT_SIZE + 2]; + const float rc_left = data[i * OBJECT_SIZE + 3]; + const float rc_top = data[i * OBJECT_SIZE + 4]; + const float rc_right = data[i * OBJECT_SIZE + 5]; + const float rc_bottom = data[i * OBJECT_SIZE + 6]; + + if (image_id < 0.f) { + break; // marks end-of-detections + } + if (confidence < 0.5f) { + continue; // skip objects with low confidence + } + if (filter_label != -1 && static_cast(label) != filter_label) { + continue; // filter out object classes if filter is specified + } + + cv::Rect rc; // map relative coordinates to the original image scale + rc.x = static_cast(rc_left * upscale.width); + rc.y = static_cast(rc_top * upscale.height); + rc.width = static_cast(rc_right * upscale.width) - rc.x; + rc.height = static_cast(rc_bottom * upscale.height) - rc.y; + out_objects.emplace_back(rc & surface); + } + } +}; + +GAPI_OCV_KERNEL(OCVToMosaic, ToMosaic) { + static void run(const std::vector &in_plate_rcs, + const std::vector &in_face_rcs, + std::vector &out_prims) { + out_prims.clear(); + const auto cvt = [](cv::Rect rc) { + // Align the mosaic region to mosaic block size + const int BLOCK_SIZE = 24; + const int dw = BLOCK_SIZE - (rc.width % BLOCK_SIZE); + const int dh = BLOCK_SIZE - (rc.height % BLOCK_SIZE); + rc.width += dw; + rc.height += dh; + rc.x -= dw / 2; + rc.y -= dh / 2; + return cv::gapi::wip::draw::Mosaic{rc, BLOCK_SIZE, 0}; + }; + for (auto &&rc : in_plate_rcs) { out_prims.emplace_back(cvt(rc)); } + for (auto &&rc : in_face_rcs) { out_prims.emplace_back(cvt(rc)); } + } +}; + +} // namespace custom + +int main(int argc, char *argv[]) +{ + cv::CommandLineParser cmd(argc, argv, keys); + cmd.about(about); + if (cmd.has("help")) { + cmd.printMessage(); + return 0; + } + const std::string input = cmd.get("input"); + const bool no_show = cmd.get("noshow"); + const bool run_trad = cmd.get("trad"); + + cv::GMat in; + cv::GMat blob_plates = cv::gapi::infer(in); + cv::GMat blob_faces = cv::gapi::infer(in); + // VehLicDetector from Open Model Zoo marks vehicles with label "1" and + // license plates with label "2", filter out license plates only. + cv::GArray rc_plates = custom::ParseSSD::on(blob_plates, in, 2); + // Face detector produces faces only so there's no need to filter by label, + // pass "-1". + cv::GArray rc_faces = custom::ParseSSD::on(blob_faces, in, -1); + cv::GMat out = cv::gapi::wip::draw::render3ch(in, custom::ToMosaic::on(rc_plates, rc_faces)); + cv::GComputation graph(in, out); + + const auto plate_model_path = cmd.get("platm"); + auto plate_net = cv::gapi::ie::Params { + plate_model_path, // path to topology IR + weights_path(plate_model_path), // path to weights + cmd.get("platd"), // device specifier + }; + const auto face_model_path = cmd.get("facem"); + auto face_net = cv::gapi::ie::Params { + face_model_path, // path to topology IR + weights_path(face_model_path), // path to weights + cmd.get("faced"), // device specifier + }; + auto kernels = cv::gapi::kernels(); + auto networks = cv::gapi::networks(plate_net, face_net); + + cv::TickMeter tm; + cv::Mat out_frame; + std::size_t frames = 0u; + std::cout << "Reading " << input << std::endl; + + if (run_trad) { + cv::Mat in_frame; + cv::VideoCapture cap(input); + cap >> in_frame; + + auto exec = graph.compile(cv::descr_of(in_frame), cv::compile_args(kernels, networks)); + tm.start(); + do { + exec(in_frame, out_frame); + if (!no_show) { + cv::imshow("Out", out_frame); + cv::waitKey(1); + } + frames++; + } while (cap.read(in_frame)); + tm.stop(); + } else { + auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks)); + pipeline.setSource(cv::gapi::wip::make_src(input)); + pipeline.start(); + tm.start(); + + while (pipeline.pull(cv::gout(out_frame))) { + frames++; + if (!no_show) { + cv::imshow("Out", out_frame); + cv::waitKey(1); + } + } + + tm.stop(); + } + + std::cout << "Processed " << frames << " frames" + << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; + return 0; +}