@ -1,55 +0,0 @@ |
||||
Creating Widgets {#tutorial_creating_widgets} |
||||
================ |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this tutorial you will learn how to |
||||
|
||||
- Create your own widgets using WidgetAccessor and VTK. |
||||
- Show your widget in the visualization window. |
||||
|
||||
Code |
||||
---- |
||||
|
||||
You can download the code from [here ](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/viz/creating_widgets.cpp). |
||||
@include samples/cpp/tutorial_code/viz/creating_widgets.cpp |
||||
|
||||
Explanation |
||||
----------- |
||||
|
||||
Here is the general structure of the program: |
||||
|
||||
- Extend Widget3D class to create a new 3D widget. |
||||
@code{.cpp} |
||||
class WTriangle : public viz::Widget3D |
||||
{ |
||||
public: |
||||
WTriangle(const Point3f &pt1, const Point3f &pt2, const Point3f &pt3, const viz::Color & color = viz::Color::white()); |
||||
}; |
||||
@endcode |
||||
- Assign a VTK actor to the widget. |
||||
@code{.cpp} |
||||
// Store this actor in the widget in order that visualizer can access it |
||||
viz::WidgetAccessor::setProp(*this, actor); |
||||
@endcode |
||||
- Set color of the widget. |
||||
@code{.cpp} |
||||
// Set the color of the widget. This has to be called after WidgetAccessor. |
||||
setColor(color); |
||||
@endcode |
||||
- Construct a triangle widget and display it in the window. |
||||
@code{.cpp} |
||||
/// Create a triangle widget |
||||
WTriangle tw(Point3f(0.0,0.0,0.0), Point3f(1.0,1.0,1.0), Point3f(0.0,1.0,0.0), viz::Color::red()); |
||||
|
||||
/// Show widget in the visualizer window |
||||
myWindow.showWidget("TRIANGLE", tw); |
||||
@endcode |
||||
|
||||
Results |
||||
------- |
||||
|
||||
Here is the result of the program. |
||||
|
||||
 |
Before Width: | Height: | Size: 10 KiB |
@ -1,51 +0,0 @@ |
||||
Creating a 3D histogram {#tutorial_histo3D} |
||||
================ |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this tutorial you will learn how to |
||||
|
||||
- Create your own callback keyboard function for viz window. |
||||
- Show your 3D histogram in a viz window. |
||||
|
||||
Code |
||||
---- |
||||
|
||||
You can download the code from [here ](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/viz/histo3D.cpp). |
||||
@include samples/cpp/tutorial_code/viz/histo3D.cpp |
||||
|
||||
Explanation |
||||
----------- |
||||
|
||||
Here is the general structure of the program: |
||||
|
||||
- You can give full path to an image in command line |
||||
@snippet histo3D.cpp command_line_parser |
||||
|
||||
or without path, a synthetic image is generated with pixel values are a gaussian distribution @ref cv::RNG::fill center(60+/-10,40+/-5,50+/-20) in first quadrant, |
||||
(160+/-20,10+/-5,50+/-10) in second quadrant, (90+/-10,100+/-20,50+/-20) in third quadrant, (100+/-10,10+/-5,150+/-40) in last quadrant. |
||||
@snippet histo3D.cpp synthetic_image |
||||
Image tridimensional histogram is calculated using opencv @ref cv::calcHist and @ref cv::normalize between 0 and 100. |
||||
@snippet histo3D.cpp calchist_for_histo3d |
||||
channel are 2, 1 and 0 to synchronise color with Viz axis color in objetc cv::viz::WCoordinateSystem. |
||||
|
||||
A slidebar is inserted in image window. Init slidebar value is 90, it means that only histogram cell greater than 9/100000.0 (23 pixels for an 512X512 pixels) will be display. |
||||
@snippet histo3D.cpp slide_bar_for_thresh |
||||
We are ready to open a viz window with a callback function to capture keyboard event in viz window. Using @ref cv::viz::Viz3d::spinOnce enable keyboard event to be capture in @ref cv::imshow window too. |
||||
@snippet histo3D.cpp manage_viz_imshow_window |
||||
The function DrawHistogram3D processes histogram Mat to display it in a Viz window. Number of plan, row and column in [three dimensional Mat](@ref CVMat_Details ) can be found using this code : |
||||
@snippet histo3D.cpp get_cube_size |
||||
To get histogram value at a specific location we use @ref cv::Mat::at(int i0,int i1, int i2) method with three arguments k, i and j where k is plane number, i row number and j column number. |
||||
@snippet histo3D.cpp get_cube_values |
||||
|
||||
- Callback function |
||||
Principle are as mouse callback function. Key code pressed is in field code of class @ref cv::viz::KeyboardEvent. |
||||
@snippet histo3D.cpp viz_keyboard_callback |
||||
|
||||
Results |
||||
------- |
||||
|
||||
Here is the result of the program with no argument and threshold equal to 50. |
||||
|
||||
 |
Before Width: | Height: | Size: 839 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 1.1 KiB |
Before Width: | Height: | Size: 7.3 KiB |
@ -1,64 +0,0 @@ |
||||
Launching Viz {#tutorial_launching_viz} |
||||
============= |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this tutorial you will learn how to |
||||
|
||||
- Open a visualization window. |
||||
- Access a window by its name. |
||||
- Start event loop. |
||||
- Start event loop for a given amount of time. |
||||
|
||||
Code |
||||
---- |
||||
|
||||
You can download the code from [here ](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/viz/launching_viz.cpp). |
||||
@include samples/cpp/tutorial_code/viz/launching_viz.cpp |
||||
|
||||
Explanation |
||||
----------- |
||||
|
||||
Here is the general structure of the program: |
||||
|
||||
- Create a window. |
||||
@code{.cpp} |
||||
/// Create a window |
||||
viz::Viz3d myWindow("Viz Demo"); |
||||
@endcode |
||||
- Start event loop. This event loop will run until user terminates it by pressing **e**, **E**, |
||||
**q**, **Q**. |
||||
@code{.cpp} |
||||
/// Start event loop |
||||
myWindow.spin(); |
||||
@endcode |
||||
- Access same window via its name. Since windows are implicitly shared, **sameWindow** is exactly |
||||
the same with **myWindow**. If the name does not exist, a new window is created. |
||||
@code{.cpp} |
||||
/// Access window via its name |
||||
viz::Viz3d sameWindow = viz::getWindowByName("Viz Demo"); |
||||
@endcode |
||||
- Start a controlled event loop. Once it starts, **wasStopped** is set to false. Inside the while |
||||
loop, in each iteration, **spinOnce** is called to prevent event loop from completely stopping. |
||||
Inside the while loop, user can execute other statements including those which interact with the |
||||
window. |
||||
@code{.cpp} |
||||
/// Event loop is over when pressed q, Q, e, E |
||||
/// Start event loop once for 1 millisecond |
||||
sameWindow.spinOnce(1, true); |
||||
while(!sameWindow.wasStopped()) |
||||
{ |
||||
/// Interact with window |
||||
|
||||
/// Event loop for 1 millisecond |
||||
sameWindow.spinOnce(1, true); |
||||
} |
||||
@endcode |
||||
|
||||
Results |
||||
------- |
||||
|
||||
Here is the result of the program. |
||||
|
||||
 |
@ -1,42 +0,0 @@ |
||||
OpenCV Viz {#tutorial_table_of_content_viz} |
||||
========== |
||||
|
||||
- @subpage tutorial_launching_viz |
||||
|
||||
*Compatibility:* \> OpenCV 3.0.0 |
||||
|
||||
*Author:* Ozan Tonkal |
||||
|
||||
You will learn how to launch a viz window. |
||||
|
||||
- @subpage tutorial_widget_pose |
||||
|
||||
*Compatibility:* \> OpenCV 3.0.0 |
||||
|
||||
*Author:* Ozan Tonkal |
||||
|
||||
You will learn how to change pose of a widget. |
||||
|
||||
- @subpage tutorial_transformations |
||||
|
||||
*Compatibility:* \> OpenCV 3.0.0 |
||||
|
||||
*Author:* Ozan Tonkal |
||||
|
||||
You will learn how to transform between global and camera frames. |
||||
|
||||
- @subpage tutorial_creating_widgets |
||||
|
||||
*Compatibility:* \> OpenCV 3.0.0 |
||||
|
||||
*Author:* Ozan Tonkal |
||||
|
||||
You will learn how to create your own widgets. |
||||
|
||||
- @subpage tutorial_histo3D |
||||
|
||||
*Compatibility:* \> OpenCV 3.0.0 |
||||
|
||||
*Author:* Laurent Berger |
||||
|
||||
You will learn how to plot a 3D histogram. |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 13 KiB |
@ -1,88 +0,0 @@ |
||||
Transformations {#tutorial_transformations} |
||||
=============== |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this tutorial you will learn how to |
||||
|
||||
- How to use makeTransformToGlobal to compute pose |
||||
- How to use makeCameraPose and Viz3d::setViewerPose |
||||
- How to visualize camera position by axes and by viewing frustum |
||||
|
||||
Code |
||||
---- |
||||
|
||||
You can download the code from [here ](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/viz/transformations.cpp). |
||||
@include samples/cpp/tutorial_code/viz/transformations.cpp |
||||
|
||||
Explanation |
||||
----------- |
||||
|
||||
Here is the general structure of the program: |
||||
|
||||
- Create a visualization window. |
||||
@code{.cpp} |
||||
/// Create a window |
||||
viz::Viz3d myWindow("Transformations"); |
||||
@endcode |
||||
- Get camera pose from camera position, camera focal point and y direction. |
||||
@code{.cpp} |
||||
/// Let's assume camera has the following properties |
||||
Point3f cam_pos(3.0f,3.0f,3.0f), cam_focal_point(3.0f,3.0f,2.0f), cam_y_dir(-1.0f,0.0f,0.0f); |
||||
|
||||
/// We can get the pose of the cam using makeCameraPose |
||||
Affine3f cam_pose = viz::makeCameraPose(cam_pos, cam_focal_point, cam_y_dir); |
||||
@endcode |
||||
- Obtain transform matrix knowing the axes of camera coordinate system. |
||||
@code{.cpp} |
||||
/// We can get the transformation matrix from camera coordinate system to global using |
||||
/// - makeTransformToGlobal. We need the axes of the camera |
||||
Affine3f transform = viz::makeTransformToGlobal(Vec3f(0.0f,-1.0f,0.0f), Vec3f(-1.0f,0.0f,0.0f), Vec3f(0.0f,0.0f,-1.0f), cam_pos); |
||||
@endcode |
||||
- Create a cloud widget from bunny.ply file |
||||
@code{.cpp} |
||||
/// Create a cloud widget. |
||||
Mat bunny_cloud = cvcloud_load(); |
||||
viz::WCloud cloud_widget(bunny_cloud, viz::Color::green()); |
||||
@endcode |
||||
- Given the pose in camera coordinate system, estimate the global pose. |
||||
@code{.cpp} |
||||
/// Pose of the widget in camera frame |
||||
Affine3f cloud_pose = Affine3f().translate(Vec3f(0.0f,0.0f,3.0f)); |
||||
/// Pose of the widget in global frame |
||||
Affine3f cloud_pose_global = transform * cloud_pose; |
||||
@endcode |
||||
- If the view point is set to be global, visualize camera coordinate frame and viewing frustum. |
||||
@code{.cpp} |
||||
/// Visualize camera frame |
||||
if (!camera_pov) |
||||
{ |
||||
viz::WCameraPosition cpw(0.5); // Coordinate axes |
||||
viz::WCameraPosition cpw_frustum(Vec2f(0.889484, 0.523599)); // Camera frustum |
||||
myWindow.showWidget("CPW", cpw, cam_pose); |
||||
myWindow.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose); |
||||
} |
||||
@endcode |
||||
- Visualize the cloud widget with the estimated global pose |
||||
@code{.cpp} |
||||
/// Visualize widget |
||||
myWindow.showWidget("bunny", cloud_widget, cloud_pose_global); |
||||
@endcode |
||||
- If the view point is set to be camera's, set viewer pose to **cam_pose**. |
||||
@code{.cpp} |
||||
/// Set the viewer pose to that of camera |
||||
if (camera_pov) |
||||
myWindow.setViewerPose(cam_pose); |
||||
@endcode |
||||
|
||||
Results |
||||
------- |
||||
|
||||
-# Here is the result from the camera point of view. |
||||
|
||||
 |
||||
|
||||
-# Here is the result from global point of view. |
||||
|
||||
 |
Before Width: | Height: | Size: 40 KiB |
@ -1,85 +0,0 @@ |
||||
Pose of a widget {#tutorial_widget_pose} |
||||
================ |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
In this tutorial you will learn how to |
||||
|
||||
- Add widgets to the visualization window |
||||
- Use Affine3 to set pose of a widget |
||||
- Rotating and translating a widget along an axis |
||||
|
||||
Code |
||||
---- |
||||
|
||||
You can download the code from [here ](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/viz/widget_pose.cpp). |
||||
@include samples/cpp/tutorial_code/viz/widget_pose.cpp |
||||
|
||||
Explanation |
||||
----------- |
||||
|
||||
Here is the general structure of the program: |
||||
|
||||
- Create a visualization window. |
||||
@code{.cpp} |
||||
/// Create a window |
||||
viz::Viz3d myWindow("Coordinate Frame"); |
||||
@endcode |
||||
- Show coordinate axes in the window using CoordinateSystemWidget. |
||||
@code{.cpp} |
||||
/// Add coordinate axes |
||||
myWindow.showWidget("Coordinate Widget", viz::WCoordinateSystem()); |
||||
@endcode |
||||
- Display a line representing the axis (1,1,1). |
||||
@code{.cpp} |
||||
/// Add line to represent (1,1,1) axis |
||||
viz::WLine axis(Point3f(-1.0f,-1.0f,-1.0f), Point3f(1.0f,1.0f,1.0f)); |
||||
axis.setRenderingProperty(viz::LINE_WIDTH, 4.0); |
||||
myWindow.showWidget("Line Widget", axis); |
||||
@endcode |
||||
- Construct a cube. |
||||
@code{.cpp} |
||||
/// Construct a cube widget |
||||
viz::WCube cube_widget(Point3f(0.5,0.5,0.0), Point3f(0.0,0.0,-0.5), true, viz::Color::blue()); |
||||
cube_widget.setRenderingProperty(viz::LINE_WIDTH, 4.0); |
||||
myWindow.showWidget("Cube Widget", cube_widget); |
||||
@endcode |
||||
- Create rotation matrix from rodrigues vector |
||||
@code{.cpp} |
||||
/// Rotate around (1,1,1) |
||||
rot_vec.at<float>(0,0) += CV_PI * 0.01f; |
||||
rot_vec.at<float>(0,1) += CV_PI * 0.01f; |
||||
rot_vec.at<float>(0,2) += CV_PI * 0.01f; |
||||
|
||||
... |
||||
|
||||
Mat rot_mat; |
||||
Rodrigues(rot_vec, rot_mat); |
||||
@endcode |
||||
- Use Affine3f to set pose of the cube. |
||||
@code{.cpp} |
||||
/// Construct pose |
||||
Affine3f pose(rot_mat, Vec3f(translation, translation, translation)); |
||||
myWindow.setWidgetPose("Cube Widget", pose); |
||||
@endcode |
||||
- Animate the rotation using wasStopped and spinOnce |
||||
@code{.cpp} |
||||
while(!myWindow.wasStopped()) |
||||
{ |
||||
... |
||||
|
||||
myWindow.spinOnce(1, true); |
||||
} |
||||
@endcode |
||||
|
||||
Results |
||||
------- |
||||
|
||||
Here is the result of the program. |
||||
|
||||
\htmlonly |
||||
<div align="center"> |
||||
<iframe width="420" height="315" src="https://www.youtube.com/embed/22HKMN657U0" frameborder="0" allowfullscreen></iframe> |
||||
</div> |
||||
\endhtmlonly |
@ -1,122 +0,0 @@ |
||||
/**
|
||||
* @file creating_widgets.cpp |
||||
* @brief Creating custom widgets using VTK |
||||
* @author Ozan Cagri Tonkal |
||||
*/ |
||||
|
||||
#ifndef USE_VTK |
||||
#include <iostream> |
||||
int main() |
||||
{ |
||||
std::cout << "This sample requires direct compilation with VTK. Stop" << std::endl; |
||||
return 0; |
||||
} |
||||
#else |
||||
#include <opencv2/viz.hpp> |
||||
#include <opencv2/viz/widget_accessor.hpp> |
||||
#include <iostream> |
||||
|
||||
#include <vtkPoints.h> |
||||
#include <vtkTriangle.h> |
||||
#include <vtkCellArray.h> |
||||
#include <vtkPolyData.h> |
||||
#include <vtkPolyDataMapper.h> |
||||
#include <vtkIdList.h> |
||||
#include <vtkActor.h> |
||||
#include <vtkProp.h> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
/**
|
||||
* @function help |
||||
* @brief Display instructions to use this tutorial program |
||||
*/ |
||||
static void help() |
||||
{ |
||||
cout |
||||
<< "--------------------------------------------------------------------------" << endl |
||||
<< "This program shows how to create a custom widget. You can create your own " |
||||
<< "widgets by extending Widget2D/Widget3D, and with the help of WidgetAccessor." << endl |
||||
<< "Usage:" << endl |
||||
<< "./creating_widgets" << endl |
||||
<< endl; |
||||
} |
||||
|
||||
/**
|
||||
* @class TriangleWidget |
||||
* @brief Defining our own 3D Triangle widget |
||||
*/ |
||||
class WTriangle : public viz::Widget3D |
||||
{ |
||||
public: |
||||
WTriangle(const Point3f &pt1, const Point3f &pt2, const Point3f &pt3, const viz::Color & color = viz::Color::white()); |
||||
}; |
||||
|
||||
/**
|
||||
* @function TriangleWidget::TriangleWidget |
||||
* @brief Constructor |
||||
*/ |
||||
WTriangle::WTriangle(const Point3f &pt1, const Point3f &pt2, const Point3f &pt3, const viz::Color & color) |
||||
{ |
||||
// Create a triangle
|
||||
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New(); |
||||
points->InsertNextPoint(pt1.x, pt1.y, pt1.z); |
||||
points->InsertNextPoint(pt2.x, pt2.y, pt2.z); |
||||
points->InsertNextPoint(pt3.x, pt3.y, pt3.z); |
||||
|
||||
vtkSmartPointer<vtkTriangle> triangle = vtkSmartPointer<vtkTriangle>::New(); |
||||
triangle->GetPointIds()->SetId(0,0); |
||||
triangle->GetPointIds()->SetId(1,1); |
||||
triangle->GetPointIds()->SetId(2,2); |
||||
|
||||
vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New(); |
||||
cells->InsertNextCell(triangle); |
||||
|
||||
// Create a polydata object
|
||||
vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New(); |
||||
|
||||
// Add the geometry and topology to the polydata
|
||||
polyData->SetPoints(points); |
||||
polyData->SetPolys(cells); |
||||
|
||||
// Create mapper and actor
|
||||
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New(); |
||||
#if VTK_MAJOR_VERSION <= 5 |
||||
mapper->SetInput(polyData); |
||||
#else |
||||
mapper->SetInputData(polyData); |
||||
#endif |
||||
|
||||
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New(); |
||||
actor->SetMapper(mapper); |
||||
|
||||
// Store this actor in the widget in order that visualizer can access it
|
||||
viz::WidgetAccessor::setProp(*this, actor); |
||||
|
||||
// Set the color of the widget. This has to be called after WidgetAccessor.
|
||||
setColor(color); |
||||
} |
||||
|
||||
/**
|
||||
* @function main |
||||
*/ |
||||
int main() |
||||
{ |
||||
help(); |
||||
|
||||
/// Create a window
|
||||
viz::Viz3d myWindow("Creating Widgets"); |
||||
|
||||
/// Create a triangle widget
|
||||
WTriangle tw(Point3f(0.0,0.0,0.0), Point3f(1.0,1.0,1.0), Point3f(0.0,1.0,0.0), viz::Color::red()); |
||||
|
||||
/// Show widget in the visualizer window
|
||||
myWindow.showWidget("TRIANGLE", tw); |
||||
|
||||
/// Start event loop
|
||||
myWindow.spin(); |
||||
|
||||
return 0; |
||||
} |
||||
#endif |
@ -1,188 +0,0 @@ |
||||
#include <opencv2/core.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
#include <iostream> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
#ifdef HAVE_OPENCV_VIZ |
||||
|
||||
#include <opencv2/viz.hpp> |
||||
|
||||
const String keys = |
||||
"{Aide h usage ? help | | print this message }" |
||||
"{@arg1 | | Full path to color imag (3 channels)}" |
||||
; |
||||
|
||||
|
||||
struct Histo3DData { |
||||
Mat histogram; |
||||
int seuil; |
||||
double threshold; |
||||
Ptr<viz::Viz3d> fen3D; |
||||
int nbWidget; |
||||
bool status; |
||||
double maxH; |
||||
int code; |
||||
}; |
||||
|
||||
void DrawHistogram3D(Histo3DData &); |
||||
void AddSlidebar(String sliderName, String windowName, int sliderMin, int sliderMax, int valeurDefaut, int *sliderVal, void(*f)(int, void *), void *r); |
||||
void UpdateThreshold(int , void * r); |
||||
void KeyboardViz3d(const viz::KeyboardEvent &w, void *t); |
||||
|
||||
|
||||
void DrawHistogram3D(Histo3DData &h) |
||||
{ |
||||
//! [get_cube_size]
|
||||
int planSize = (int)h.histogram.step1(0); |
||||
int cols = (int)h.histogram.step1(1); |
||||
int rows = (int)planSize / cols; |
||||
int plans = (int)h.histogram.total() / planSize; |
||||
h.fen3D->removeAllWidgets(); |
||||
h.nbWidget=0; |
||||
if (h.nbWidget==0) |
||||
h.fen3D->showWidget("Axis", viz::WCoordinateSystem(10)); |
||||
//! [get_cube_size]
|
||||
//! [get_cube_values]
|
||||
for (int k = 0; k < plans; k++) |
||||
{ |
||||
for (int i = 0; i < rows; i++) |
||||
{ |
||||
for (int j = 0; j < cols; j++) |
||||
{ |
||||
double x = h.histogram.at<float>(k, i, j); |
||||
if (x >= h.threshold) |
||||
{ |
||||
double r=std::max(x/h.maxH,0.1); |
||||
viz::WCube s(Point3d(k - r / 2, i - r / 2, j - r / 2), Point3d(k + r / 2, i + r / 2, j + r / 2), false, viz::Color(j / double(plans) * 255, i / double(rows) * 255, k / double(cols) * 255)); |
||||
h.fen3D->showWidget(format("I3d%d", h.nbWidget++), s); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
//! [get_cube_values]
|
||||
h.status = false; |
||||
} |
||||
//! [viz_keyboard_callback]
|
||||
void KeyboardViz3d(const viz::KeyboardEvent &w, void *t) |
||||
{ |
||||
Histo3DData *x=(Histo3DData *)t; |
||||
if (w.action) |
||||
cout << "you pressed "<< w.symbol<< " in viz window "<<x->fen3D->getWindowName()<<"\n"; |
||||
x->code= w.code; |
||||
switch (w.code) { |
||||
case '/': |
||||
x->status=true; |
||||
x->threshold *= 0.9; |
||||
break; |
||||
case '*': |
||||
x->status = true; |
||||
x->threshold *= 1.1; |
||||
break; |
||||
} |
||||
if (x->status) |
||||
{ |
||||
cout << x->threshold << "\n"; |
||||
DrawHistogram3D(*x); |
||||
} |
||||
} |
||||
//! [viz_keyboard_callback]
|
||||
|
||||
|
||||
void AddSlidebar(String sliderName, String windowName, int sliderMin, int sliderMax, int defaultSlider, int *sliderVal, void(*f)(int, void *), void *r) |
||||
{ |
||||
createTrackbar(sliderName, windowName, sliderVal, 1, f, r); |
||||
setTrackbarMin(sliderName, windowName, sliderMin); |
||||
setTrackbarMax(sliderName, windowName, sliderMax); |
||||
setTrackbarPos(sliderName, windowName, defaultSlider); |
||||
} |
||||
|
||||
|
||||
void UpdateThreshold(int , void * r) |
||||
{ |
||||
Histo3DData *h = (Histo3DData *)r; |
||||
h->status=true; |
||||
h->threshold = h->seuil/1000000.0; |
||||
cout<<"Widget : "<<h->nbWidget<<","<< h->threshold<<"\n"; |
||||
} |
||||
|
||||
int main (int argc,char **argv) |
||||
{ |
||||
//! [command_line_parser]
|
||||
CommandLineParser parser(argc, argv, keys); |
||||
|
||||
if (parser.has("help")) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
String nomFic = parser.get<String>(0); |
||||
Mat img; |
||||
if (nomFic.length() != 0) |
||||
{ |
||||
img = imread(nomFic, IMREAD_COLOR); |
||||
if (img.empty()) |
||||
{ |
||||
cout << "Image does not exist!"; |
||||
return 0; |
||||
} |
||||
} |
||||
//! [command_line_parser]
|
||||
//! [synthetic_image]
|
||||
else |
||||
{ |
||||
img = Mat(512,512,CV_8UC3); |
||||
parser.printMessage(); |
||||
RNG r; |
||||
r.fill(img(Rect(0, 0, 256, 256)), RNG::NORMAL, Vec3b(60, 40, 50), Vec3b(10, 5, 20)); |
||||
r.fill(img(Rect(256, 0, 256, 256)), RNG::NORMAL, Vec3b(160, 10, 50), Vec3b(20, 5, 10)); |
||||
r.fill(img(Rect(0, 256, 256, 256)), RNG::NORMAL, Vec3b(90, 100, 50), Vec3b(10, 20, 20)); |
||||
r.fill(img(Rect(256, 256, 256, 256)), RNG::NORMAL, Vec3b(100, 10, 150), Vec3b(10, 5, 40)); |
||||
} |
||||
//! [synthetic_image]
|
||||
//! [calchist_for_histo3d]
|
||||
Histo3DData h; |
||||
h.status=true; |
||||
h.seuil=90; |
||||
h.threshold= h.seuil/1000000.0; |
||||
float hRange[] = { 0, 256 }; |
||||
const float* etendu[] = { hRange, hRange,hRange }; |
||||
int hBins = 32; |
||||
int histSize[] = { hBins, hBins , hBins }; |
||||
int channel[] = { 2, 1,0 }; |
||||
calcHist(&img, 1, channel, Mat(), h.histogram, 3, histSize, etendu, true, false); |
||||
normalize(h.histogram, h.histogram, 100.0/(img.total()), 0, NORM_MINMAX, -1, Mat()); |
||||
minMaxIdx(h.histogram,NULL,&h.maxH,NULL,NULL); |
||||
//! [calchist_for_histo3d]
|
||||
//! [slide_bar_for_thresh]
|
||||
namedWindow("Image"); |
||||
imshow("Image",img); |
||||
AddSlidebar("threshold","Image",0,100,h.seuil,&h.seuil, UpdateThreshold,&h); |
||||
waitKey(30); |
||||
//! [slide_bar_for_thresh]
|
||||
//! [manage_viz_imshow_window]
|
||||
h.fen3D = makePtr<viz::Viz3d>("3D Histogram"); |
||||
h.nbWidget=0; |
||||
h.fen3D->registerKeyboardCallback(KeyboardViz3d,&h); |
||||
DrawHistogram3D(h); |
||||
while (h.code!=27) |
||||
{ |
||||
h.fen3D->spinOnce(1); |
||||
if (h.status) |
||||
DrawHistogram3D(h); |
||||
if (h.code!=27) |
||||
h.code= waitKey(30); |
||||
} |
||||
//! [manage_viz_imshow_window]
|
||||
return 0; |
||||
} |
||||
#else |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
cout << " you need VIZ module\n"; |
||||
return 0; |
||||
} |
||||
#endif |
@ -1,66 +0,0 @@ |
||||
/**
|
||||
* @file launching_viz.cpp |
||||
* @brief Launching visualization window |
||||
* @author Ozan Cagri Tonkal |
||||
*/ |
||||
|
||||
#include <opencv2/viz.hpp> |
||||
#include <iostream> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
/**
|
||||
* @function help |
||||
* @brief Display instructions to use this tutorial program |
||||
*/ |
||||
static void help() |
||||
{ |
||||
cout |
||||
<< "--------------------------------------------------------------------------" << endl |
||||
<< "This program shows how to launch a 3D visualization window. You can stop event loop to continue executing. " |
||||
<< "You can access the same window via its name. You can run event loop for a given period of time. " << endl |
||||
<< "Usage:" << endl |
||||
<< "./launching_viz" << endl |
||||
<< endl; |
||||
} |
||||
|
||||
/**
|
||||
* @function main |
||||
*/ |
||||
int main() |
||||
{ |
||||
help(); |
||||
/// Create a window
|
||||
viz::Viz3d myWindow("Viz Demo"); |
||||
|
||||
/// Start event loop
|
||||
myWindow.spin(); |
||||
|
||||
/// Event loop is over when pressed q, Q, e, E
|
||||
cout << "First event loop is over" << endl; |
||||
|
||||
/// Access window via its name
|
||||
viz::Viz3d sameWindow = viz::getWindowByName("Viz Demo"); |
||||
|
||||
/// Start event loop
|
||||
sameWindow.spin(); |
||||
|
||||
/// Event loop is over when pressed q, Q, e, E
|
||||
cout << "Second event loop is over" << endl; |
||||
|
||||
/// Event loop is over when pressed q, Q, e, E
|
||||
/// Start event loop once for 1 millisecond
|
||||
sameWindow.spinOnce(1, true); |
||||
while(!sameWindow.wasStopped()) |
||||
{ |
||||
/// Interact with window
|
||||
|
||||
/// Event loop for 1 millisecond
|
||||
sameWindow.spinOnce(1, true); |
||||
} |
||||
|
||||
/// Once more event loop is stopped
|
||||
cout << "Last event loop is over" << endl; |
||||
return 0; |
||||
} |
@ -1,112 +0,0 @@ |
||||
/**
|
||||
* @file transformations.cpp |
||||
* @brief Visualizing cloud in different positions, coordinate frames, camera frustums |
||||
* @author Ozan Cagri Tonkal |
||||
*/ |
||||
|
||||
#include <opencv2/viz.hpp> |
||||
#include <iostream> |
||||
#include <fstream> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
/**
|
||||
* @function help |
||||
* @brief Display instructions to use this tutorial program |
||||
*/ |
||||
static void help() |
||||
{ |
||||
cout |
||||
<< "--------------------------------------------------------------------------" << endl |
||||
<< "This program shows how to use makeTransformToGlobal() to compute required pose," |
||||
<< "how to use makeCameraPose and Viz3d::setViewerPose. You can observe the scene " |
||||
<< "from camera point of view (C) or global point of view (G)" << endl |
||||
<< "Usage:" << endl |
||||
<< "./transformations [ G | C ]" << endl |
||||
<< endl; |
||||
} |
||||
|
||||
/**
|
||||
* @function cvcloud_load |
||||
* @brief load bunny.ply |
||||
*/ |
||||
static Mat cvcloud_load() |
||||
{ |
||||
Mat cloud(1, 1889, CV_32FC3); |
||||
ifstream ifs("bunny.ply"); |
||||
|
||||
string str; |
||||
for(size_t i = 0; i < 12; ++i) |
||||
getline(ifs, str); |
||||
|
||||
Point3f* data = cloud.ptr<cv::Point3f>(); |
||||
float dummy1, dummy2; |
||||
for(size_t i = 0; i < 1889; ++i) |
||||
ifs >> data[i].x >> data[i].y >> data[i].z >> dummy1 >> dummy2; |
||||
|
||||
cloud *= 5.0f; |
||||
return cloud; |
||||
} |
||||
|
||||
/**
|
||||
* @function main |
||||
*/ |
||||
int main(int argn, char **argv) |
||||
{ |
||||
help(); |
||||
|
||||
if (argn < 2) |
||||
{ |
||||
cout << "Missing arguments." << endl; |
||||
return 1; |
||||
} |
||||
|
||||
bool camera_pov = (argv[1][0] == 'C'); |
||||
|
||||
/// Create a window
|
||||
viz::Viz3d myWindow("Coordinate Frame"); |
||||
|
||||
/// Add coordinate axes
|
||||
myWindow.showWidget("Coordinate Widget", viz::WCoordinateSystem()); |
||||
|
||||
/// Let's assume camera has the following properties
|
||||
Vec3f cam_pos(3.0f,3.0f,3.0f), cam_focal_point(3.0f,3.0f,2.0f), cam_y_dir(-1.0f,0.0f,0.0f); |
||||
|
||||
/// We can get the pose of the cam using makeCameraPose
|
||||
Affine3f cam_pose = viz::makeCameraPose(cam_pos, cam_focal_point, cam_y_dir); |
||||
|
||||
/// We can get the transformation matrix from camera coordinate system to global using
|
||||
/// - makeTransformToGlobal. We need the axes of the camera
|
||||
Affine3f transform = viz::makeTransformToGlobal(Vec3f(0.0f,-1.0f,0.0f), Vec3f(-1.0f,0.0f,0.0f), Vec3f(0.0f,0.0f,-1.0f), cam_pos); |
||||
|
||||
/// Create a cloud widget.
|
||||
Mat bunny_cloud = cvcloud_load(); |
||||
viz::WCloud cloud_widget(bunny_cloud, viz::Color::green()); |
||||
|
||||
/// Pose of the widget in camera frame
|
||||
Affine3f cloud_pose = Affine3f().translate(Vec3f(0.0f,0.0f,3.0f)); |
||||
/// Pose of the widget in global frame
|
||||
Affine3f cloud_pose_global = transform * cloud_pose; |
||||
|
||||
/// Visualize camera frame
|
||||
if (!camera_pov) |
||||
{ |
||||
viz::WCameraPosition cpw(0.5); // Coordinate axes
|
||||
viz::WCameraPosition cpw_frustum(Vec2f(0.889484, 0.523599)); // Camera frustum
|
||||
myWindow.showWidget("CPW", cpw, cam_pose); |
||||
myWindow.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose); |
||||
} |
||||
|
||||
/// Visualize widget
|
||||
myWindow.showWidget("bunny", cloud_widget, cloud_pose_global); |
||||
|
||||
/// Set the viewer pose to that of camera
|
||||
if (camera_pov) |
||||
myWindow.setViewerPose(cam_pose); |
||||
|
||||
/// Start event loop.
|
||||
myWindow.spin(); |
||||
|
||||
return 0; |
||||
} |
@ -1,79 +0,0 @@ |
||||
/**
|
||||
* @file widget_pose.cpp |
||||
* @brief Setting pose of a widget |
||||
* @author Ozan Cagri Tonkal |
||||
*/ |
||||
|
||||
#include <opencv2/viz.hpp> |
||||
#include <opencv2/calib3d.hpp> |
||||
#include <iostream> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
/**
|
||||
* @function help |
||||
* @brief Display instructions to use this tutorial program |
||||
*/ |
||||
static void help() |
||||
{ |
||||
cout |
||||
<< "--------------------------------------------------------------------------" << endl |
||||
<< "This program shows how to visualize a cube rotated around (1,1,1) and shifted " |
||||
<< "using Rodrigues vector." << endl |
||||
<< "Usage:" << endl |
||||
<< "./widget_pose" << endl |
||||
<< endl; |
||||
} |
||||
|
||||
/**
|
||||
* @function main |
||||
*/ |
||||
int main() |
||||
{ |
||||
help(); |
||||
|
||||
/// Create a window
|
||||
viz::Viz3d myWindow("Coordinate Frame"); |
||||
|
||||
/// Add coordinate axes
|
||||
myWindow.showWidget("Coordinate Widget", viz::WCoordinateSystem()); |
||||
|
||||
/// Add line to represent (1,1,1) axis
|
||||
viz::WLine axis(Point3f(-1.0f,-1.0f,-1.0f), Point3f(1.0f,1.0f,1.0f)); |
||||
axis.setRenderingProperty(viz::LINE_WIDTH, 4.0); |
||||
myWindow.showWidget("Line Widget", axis); |
||||
|
||||
/// Construct a cube widget
|
||||
viz::WCube cube_widget(Point3f(0.5,0.5,0.0), Point3f(0.0,0.0,-0.5), true, viz::Color::blue()); |
||||
cube_widget.setRenderingProperty(viz::LINE_WIDTH, 4.0); |
||||
myWindow.showWidget("Cube Widget", cube_widget); |
||||
|
||||
/// Rodrigues vector
|
||||
Mat rot_vec = Mat::zeros(1,3,CV_32F); |
||||
float translation_phase = 0.0, translation = 0.0; |
||||
while(!myWindow.wasStopped()) |
||||
{ |
||||
/* Rotation using rodrigues */ |
||||
/// Rotate around (1,1,1)
|
||||
rot_vec.at<float>(0,0) += (float)CV_PI * 0.01f; |
||||
rot_vec.at<float>(0,1) += (float)CV_PI * 0.01f; |
||||
rot_vec.at<float>(0,2) += (float)CV_PI * 0.01f; |
||||
|
||||
/// Shift on (1,1,1)
|
||||
translation_phase += (float)CV_PI * 0.01f; |
||||
translation = sin(translation_phase); |
||||
|
||||
Mat rot_mat; |
||||
Rodrigues(rot_vec, rot_mat); |
||||
|
||||
/// Construct pose
|
||||
Affine3f pose(rot_mat, Vec3f(translation, translation, translation)); |
||||
|
||||
myWindow.setWidgetPose("Cube Widget", pose); |
||||
|
||||
myWindow.spinOnce(1, true); |
||||
} |
||||
|
||||
return 0; |
||||
} |