|
|
|
@ -29,6 +29,8 @@ class BatchNormLayerImpl CV_FINAL : public BatchNormLayer |
|
|
|
|
public: |
|
|
|
|
Mat weights_, bias_; |
|
|
|
|
UMat umat_weight, umat_bias; |
|
|
|
|
mutable int dims; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BatchNormLayerImpl(const LayerParams& params) |
|
|
|
|
{ |
|
|
|
@ -142,6 +144,7 @@ public: |
|
|
|
|
std::vector<MatShape> &outputs, |
|
|
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
|
|
|
{ |
|
|
|
|
dims = inputs[0].size(); |
|
|
|
|
if (!useGlobalStats && inputs[0][0] != 1) |
|
|
|
|
CV_Error(Error::StsNotImplemented, "Batch normalization in training mode with batch size > 1"); |
|
|
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
|
|
|
@ -150,9 +153,9 @@ public: |
|
|
|
|
|
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
|
|
|
{ |
|
|
|
|
return backendId == DNN_BACKEND_OPENCV || |
|
|
|
|
return (backendId == DNN_BACKEND_OPENCV && (dims == 4 || dims == 2)) || |
|
|
|
|
(backendId == DNN_BACKEND_HALIDE && haveHalide()) || |
|
|
|
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine()); |
|
|
|
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && (preferableTarget == DNN_TARGET_CPU || dims == 4)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
|