Tutorial Hough Circles

pull/9424/head
tribta 7 years ago
parent 9ff33dacfc
commit d99ced6ec8
  1. 141
      doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.markdown
  2. BIN
      doc/tutorials/imgproc/imgtrans/hough_circle/images/Hough_Circle_Tutorial_Result.png
  3. 2
      doc/tutorials/imgproc/table_of_content_imgproc.markdown
  4. 71
      samples/cpp/houghcircles.cpp
  5. 65
      samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp
  6. BIN
      samples/data/smarties.png
  7. 77
      samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java
  8. 59
      samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py

@ -1,12 +1,15 @@
Hough Circle Transform {#tutorial_hough_circle}
======================
@prev_tutorial{tutorial_hough_lines}
@next_tutorial{tutorial_remap}
Goal
----
In this tutorial you will learn how to:
- Use the OpenCV function @ref cv::HoughCircles to detect circles in an image.
- Use the OpenCV function **HoughCircles()** to detect circles in an image.
Theory
------
@ -31,31 +34,96 @@ Theory
the best radius for each candidate center. For more details, please check the book *Learning
OpenCV* or your favorite Computer Vision bibliography
#### What does this program do?
- Loads an image and blur it to reduce the noise
- Applies the *Hough Circle Transform* to the blurred image .
- Display the detected circle in a window.
Code
----
-# **What does this program do?**
- Loads an image and blur it to reduce the noise
- Applies the *Hough Circle Transform* to the blurred image .
- Display the detected circle in a window.
-# The sample code that we will explain can be downloaded from [here](https://github.com/opencv/opencv/tree/master/samples/cpp/houghcircles.cpp).
A slightly fancier version (which shows trackbars for
changing the threshold values) can be found [here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp).
@include samples/cpp/houghcircles.cpp
@add_toggle_cpp
The sample code that we will explain can be downloaded from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp).
A slightly fancier version (which shows trackbars for changing the threshold values) can be found
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp).
@include samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp
@end_toggle
@add_toggle_java
The sample code that we will explain can be downloaded from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java).
@include samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java
@end_toggle
@add_toggle_python
The sample code that we will explain can be downloaded from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py).
@include samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py
@end_toggle
Explanation
-----------
-# Load an image
@snippet samples/cpp/houghcircles.cpp load
-# Convert it to grayscale:
@snippet samples/cpp/houghcircles.cpp convert_to_gray
-# Apply a Median blur to reduce noise and avoid false circle detection:
@snippet samples/cpp/houghcircles.cpp reduce_noise
-# Proceed to apply Hough Circle Transform:
@snippet samples/cpp/houghcircles.cpp houghcircles
with the arguments:
The image we used can be found [here](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/smarties.png)
#### Load an image:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp load
@end_toggle
@add_toggle_java
@snippet samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py load
@end_toggle
@add_toggle_python
@snippet samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java load
@end_toggle
#### Convert it to grayscale:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp convert_to_gray
@end_toggle
@add_toggle_java
@snippet samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py convert_to_gray
@end_toggle
@add_toggle_python
@snippet samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java convert_to_gray
@end_toggle
#### Apply a Median blur to reduce noise and avoid false circle detection:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp reduce_noise
@end_toggle
@add_toggle_java
@snippet samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py reduce_noise
@end_toggle
@add_toggle_python
@snippet samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java reduce_noise
@end_toggle
#### Proceed to apply Hough Circle Transform:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp houghcircles
@end_toggle
@add_toggle_java
@snippet samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py houghcircles
@end_toggle
@add_toggle_python
@snippet samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java houghcircles
@end_toggle
- with the arguments:
- *gray*: Input image (grayscale).
- *circles*: A vector that stores sets of 3 values: \f$x_{c}, y_{c}, r\f$ for each detected
@ -69,16 +137,39 @@ Explanation
- *min_radius = 0*: Minimum radius to be detected. If unknown, put zero as default.
- *max_radius = 0*: Maximum radius to be detected. If unknown, put zero as default.
-# Draw the detected circles:
@snippet samples/cpp/houghcircles.cpp draw
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
#### Draw the detected circles:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp draw
@end_toggle
@add_toggle_java
@snippet samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py draw
@end_toggle
@add_toggle_python
@snippet samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java draw
@end_toggle
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
#### Display the detected circle(s) and wait for the user to exit the program:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp display
@end_toggle
@add_toggle_java
@snippet samples/python/tutorial_code/ImgTrans/HoughCircle/hough_circle.py display
@end_toggle
-# Display the detected circle(s) and wait for the user to exit the program:
@snippet samples/cpp/houghcircles.cpp display
@add_toggle_python
@snippet samples/java/tutorial_code/ImgTrans/HoughCircle/HoughCircles.java display
@end_toggle
Result
------
The result of running the code above with a test image is shown below:
![](images/Hough_Circle_Tutorial_Result.jpg)
![](images/Hough_Circle_Tutorial_Result.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

@ -133,6 +133,8 @@ In this section you will learn about the image processing (manipulation) functio
- @subpage tutorial_hough_circle
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán

@ -1,71 +0,0 @@
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
static void help()
{
cout << "\nThis program demonstrates circle finding with the Hough transform.\n"
"Usage:\n"
"./houghcircles <image_name>, Default is ../data/board.jpg\n" << endl;
}
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
"{help h ||}{@image|../data/board.jpg|}"
);
if (parser.has("help"))
{
help();
return 0;
}
//![load]
string filename = parser.get<string>("@image");
Mat img = imread(filename, IMREAD_COLOR);
if(img.empty())
{
help();
cout << "can not open " << filename << endl;
return -1;
}
//![load]
//![convert_to_gray]
Mat gray;
cvtColor(img, gray, COLOR_BGR2GRAY);
//![convert_to_gray]
//![reduce_noise]
medianBlur(gray, gray, 5);
//![reduce_noise]
//![houghcircles]
vector<Vec3f> circles;
HoughCircles(gray, circles, HOUGH_GRADIENT, 1,
gray.rows/16, // change this value to detect circles with different distances to each other
100, 30, 1, 30 // change the last two parameters
// (min_radius & max_radius) to detect larger circles
);
//![houghcircles]
//![draw]
for( size_t i = 0; i < circles.size(); i++ )
{
Vec3i c = circles[i];
circle( img, Point(c[0], c[1]), c[2], Scalar(0,0,255), 3, LINE_AA);
circle( img, Point(c[0], c[1]), 2, Scalar(0,255,0), 3, LINE_AA);
}
//![draw]
//![display]
imshow("detected circles", img);
waitKey();
//![display]
return 0;
}

@ -0,0 +1,65 @@
/**
* @file houghcircles.cpp
* @brief This program demonstrates circle finding with the Hough transform
*/
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
//![load]
const char* filename = argc >=2 ? argv[1] : "../../../data/smarties.png";
// Loads an image
Mat src = imread( filename, IMREAD_COLOR );
// Check if image is loaded fine
if(src.empty()){
printf(" Error opening image\n");
printf(" Program Arguments: [image_name -- default %s] \n", filename);
return -1;
}
//![load]
//![convert_to_gray]
Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
//![convert_to_gray]
//![reduce_noise]
medianBlur(gray, gray, 5);
//![reduce_noise]
//![houghcircles]
vector<Vec3f> circles;
HoughCircles(gray, circles, HOUGH_GRADIENT, 1,
gray.rows/16, // change this value to detect circles with different distances to each other
100, 30, 1, 30 // change the last two parameters
// (min_radius & max_radius) to detect larger circles
);
//![houghcircles]
//![draw]
for( size_t i = 0; i < circles.size(); i++ )
{
Vec3i c = circles[i];
Point center = Point(c[0], c[1]);
// circle center
circle( src, center, 1, Scalar(0,100,100), 3, LINE_AA);
// circle outline
int radius = c[2];
circle( src, center, radius, Scalar(255,0,255), 3, LINE_AA);
}
//![draw]
//![display]
imshow("detected circles", src);
waitKey();
//![display]
return 0;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

@ -0,0 +1,77 @@
package sample;
/**
* @file HoughCircles.java
* @brief This program demonstrates circle finding with the Hough transform
*/
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class HoughCirclesRun {
public void run(String[] args) {
//! [load]
String default_file = "../../../../data/smarties.png";
String filename = ((args.length > 0) ? args[0] : default_file);
// Load an image
Mat src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_COLOR);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image!");
System.out.println("Program Arguments: [image_name -- default "
+ default_file +"] \n");
System.exit(-1);
}
//! [load]
//! [convert_to_gray]
Mat gray = new Mat();
Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
//! [convert_to_gray]
//![reduce_noise]
Imgproc.medianBlur(gray, gray, 5);
//![reduce_noise]
//! [houghcircles]
Mat circles = new Mat();
Imgproc.HoughCircles(gray, circles, Imgproc.HOUGH_GRADIENT, 1.0,
(double)gray.rows()/16, // change this value to detect circles with different distances to each other
100.0, 30.0, 1, 30); // change the last two parameters
// (min_radius & max_radius) to detect larger circles
//! [houghcircles]
//! [draw]
for (int x = 0; x < circles.cols(); x++) {
double[] c = circles.get(0, x);
Point center = new Point(Math.round(c[0]), Math.round(c[1]));
// circle center
Imgproc.circle(src, center, 1, new Scalar(0,100,100), 3, 8, 0 );
// circle outline
int radius = (int) Math.round(c[2]);
Imgproc.circle(src, center, radius, new Scalar(255,0,255), 3, 8, 0 );
}
//! [draw]
//! [display]
HighGui.imshow("detected circles", src);
HighGui.waitKey();
//! [display]
System.exit(0);
}
}
public class HoughCircles {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new HoughCirclesRun().run(args);
}
}

@ -0,0 +1,59 @@
import sys
import cv2
import numpy as np
def main(argv):
## [load]
default_file = "../../../../data/smarties.png"
filename = argv[0] if len(argv) > 0 else default_file
# Loads an image
src = cv2.imread(filename, cv2.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
return -1
## [load]
## [convert_to_gray]
# Convert it to gray
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
## [convert_to_gray]
## [reduce_noise]
# Reduce the noise to avoid false circle detection
gray = cv2.medianBlur(gray, 5)
## [reduce_noise]
## [houghcircles]
rows = gray.shape[0]
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, rows / 8,
param1=100, param2=30,
minRadius=1, maxRadius=30)
## [houghcircles]
## [draw]
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
center = (i[0], i[1])
# circle center
cv2.circle(src, center, 1, (0, 100, 100), 3)
# circle outline
radius = i[2]
cv2.circle(src, center, radius, (255, 0, 255), 3)
## [draw]
## [display]
cv2.imshow("detected circles", src)
cv2.waitKey(0)
## [display]
return 0
if __name__ == "__main__":
main(sys.argv[1:])
Loading…
Cancel
Save