fixed some more tests on Windows; changed inheritance Matx -> Vec to Vec -> Matx

pull/13383/head
Vadim Pisarevsky 14 years ago
parent 5a53d82e30
commit d8ace43753
  1. 7
      modules/contrib/src/quadsubpix.cpp
  2. 242
      modules/core/include/opencv2/core/core.hpp
  3. 12
      modules/core/include/opencv2/core/mat.hpp
  4. 1567
      modules/core/include/opencv2/core/operations.hpp
  5. 4
      modules/core/src/arithm.cpp
  6. 75
      modules/core/src/matrix.cpp
  7. 2
      modules/core/src/precomp.hpp
  8. 2
      modules/flann/include/opencv2/flann/autotuned_index.h
  9. 2
      modules/flann/include/opencv2/flann/flann_base.hpp
  10. 2
      modules/flann/include/opencv2/flann/general.h
  11. 6
      modules/flann/include/opencv2/flann/object_factory.h
  12. 18
      modules/flann/src/flann.cpp
  13. 4
      modules/ml/src/gbt.cpp

@ -89,16 +89,17 @@ bool is_smaller(const std::pair<int, float>& p1, const std::pair<int, float>& p2
void orderContours(const vector<vector<Point> >& contours, Point2f point, vector<std::pair<int, float> >& order)
{
order.clear();
int i, j, n = (int)contours.size();
size_t i, j, n = contours.size();
for(i = 0; i < n; i++)
{
size_t ni = contours[i].size();
double min_dist = std::numeric_limits<double>::max();
for(j = 0; j < n; j++)
for(j = 0; j < ni; j++)
{
double dist = norm(Point2f((float)contours[i][j].x, (float)contours[i][j].y) - point);
min_dist = MIN(min_dist, dist);
}
order.push_back(std::pair<int, float>(i, (float)min_dist));
order.push_back(std::pair<int, float>((int)i, (float)min_dist));
}
std::sort(order.begin(), order.end(), is_smaller);

@ -399,104 +399,6 @@ template<> class DataDepth<float> { public: enum { value = CV_32F, fmt=(int)'f'
template<> class DataDepth<double> { public: enum { value = CV_64F, fmt=(int)'d' }; };
template<typename _Tp> class DataDepth<_Tp*> { public: enum { value = CV_USRTYPE1, fmt=(int)'r' }; };
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
template<typename _Tp, int cn> class CV_EXPORTS Vec
{
public:
typedef _Tp value_type;
enum { depth = DataDepth<_Tp>::value, channels = cn, type = CV_MAKETYPE(depth, channels) };
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! dot product
_Tp dot(const Vec& v) const;
//! dot product computed in double-precision arithmetics
double ddot(const Vec& v) const;
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! convertion to another data type
template<typename T2> operator Vec<T2, cn>() const;
//! conversion to 4-element CvScalar.
operator CvScalar() const;
Matx<_Tp, 1, cn> t() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
_Tp val[cn]; //< vector elements
};
/* \typedef
Shorter aliases for the most popular specializations of Vec<T,n>
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
////////////////////////////// Small Matrix ///////////////////////////
@ -523,12 +425,11 @@ struct CV_EXPORTS Matx_MulOp {};
struct CV_EXPORTS Matx_MatMulOp {};
struct CV_EXPORTS Matx_TOp {};
template<typename _Tp, int m, int n> class CV_EXPORTS Matx : public Vec<_Tp, m*n>
template<typename _Tp, int m, int n> class CV_EXPORTS Matx
{
public:
typedef _Tp value_type;
typedef Vec<_Tp, m*n> base_type;
typedef Vec<_Tp, MIN(m, n)> diag_type;
typedef Matx<_Tp, MIN(m, n), 1> diag_type;
typedef Matx<_Tp, m, n> mat_type;
enum { depth = DataDepth<_Tp>::value, rows = m, cols = n, channels = rows*cols,
type = CV_MAKETYPE(depth, channels) };
@ -555,15 +456,20 @@ public:
_Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
explicit Matx(const _Tp* vals); //!< initialize from a plain array
Matx(const base_type& v);
static Matx all(_Tp alpha);
static Matx zeros();
static Matx ones();
static Matx eye();
static Matx diag(const Vec<_Tp, MIN(m,n)>& d);
static Matx diag(const diag_type& d);
static Matx randu(_Tp a, _Tp b);
static Matx randn(_Tp a, _Tp b);
//! dot product computed with the default precision
_Tp dot(const Matx<_Tp, m, n>& v) const;
//! dot product computed in double-precision arithmetics
double ddot(const Matx<_Tp, m, n>& v) const;
//! convertion to another data type
template<typename T2> operator Matx<T2, m, n>() const;
@ -577,10 +483,10 @@ public:
Matx<_Tp, 1, n> row(int i) const;
//! extract the matrix column
Vec<_Tp, m> col(int i) const;
Matx<_Tp, m, 1> col(int i) const;
//! extract the matrix diagonal
Vec<_Tp, MIN(m,n)> diag() const;
Matx<_Tp, MIN(m,n), 1> diag() const;
//! transpose the matrix
Matx<_Tp, n, m> t() const;
@ -590,7 +496,7 @@ public:
//! solve linear system
template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const;
Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const;
Matx<_Tp, n, 1> solve(const Matx<_Tp, m, 1>& rhs, int method) const;
//! multiply two matrices element-wise
Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const;
@ -609,6 +515,8 @@ public:
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp);
template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp);
Matx(const Matx<_Tp, n, m>& a, Matx_TOp);
_Tp val[m*n]; //< matrix elements
};
@ -649,7 +557,100 @@ typedef Matx<float, 4, 4> Matx44f;
typedef Matx<double, 4, 4> Matx44d;
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
template<typename _Tp, int cn> class CV_EXPORTS Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = DataDepth<_Tp>::value, channels = cn, type = CV_MAKETYPE(depth, channels) };
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! convertion to another data type
template<typename T2> operator Vec<T2, cn>() const;
//! conversion to 4-element CvScalar.
operator CvScalar() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
};
/* \typedef
Shorter aliases for the most popular specializations of Vec<T,n>
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
//////////////////////////////// Complex //////////////////////////////
/*!
@ -918,8 +919,6 @@ public:
//! per-element product
Scalar_<_Tp> mul(const Scalar_<_Tp>& t, double scale=1 ) const;
//! another helper conversion method. \see cvScalarToRawData
template<typename T2> void convertTo(T2* buf, int channels, int unroll_to=0) const;
// returns (v0, -v1, -v2, -v3)
Scalar_<_Tp> conj() const;
@ -930,6 +929,8 @@ public:
typedef Scalar_<double> Scalar;
CV_EXPORTS void scalarToRawData(const Scalar& s, void* buf, int type, int unroll_to=0);
//////////////////////////////// Range /////////////////////////////////
/*!
@ -2784,28 +2785,25 @@ protected:
};
template<typename _Tp, int n> class CV_EXPORTS VecCommaInitializer
template<typename _Tp, int m, int n> class CV_EXPORTS MatxCommaInitializer
{
public:
VecCommaInitializer(Vec<_Tp, n>* _vec);
template<typename T2> VecCommaInitializer<_Tp, n>& operator , (T2 val);
Vec<_Tp, n> operator *() const;
MatxCommaInitializer(Matx<_Tp, m, n>* _mtx);
template<typename T2> MatxCommaInitializer<_Tp, m, n>& operator , (T2 val);
Matx<_Tp, m, n> operator *() const;
Vec<_Tp, n>* vec;
Matx<_Tp, m, n>* dst;
int idx;
};
template<typename _Tp, int m, int n> class CV_EXPORTS MatxCommaInitializer :
public VecCommaInitializer<_Tp, m*n>
template<typename _Tp, int m> class CV_EXPORTS VecCommaInitializer : public MatxCommaInitializer<_Tp, m, 1>
{
public:
MatxCommaInitializer(Matx<_Tp, m, n>* _mtx);
template<typename T2> MatxCommaInitializer<_Tp, m, n>& operator , (T2 val);
Matx<_Tp, m, n> operator *() const;
VecCommaInitializer(Vec<_Tp, m>* _vec);
template<typename T2> VecCommaInitializer<_Tp, m>& operator , (T2 val);
Vec<_Tp, m> operator *() const;
};
/*!
Automatically Allocated Buffer Class

@ -1873,15 +1873,15 @@ static inline MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t
template<typename _Tp> static inline MatConstIterator_<_Tp>
operator + (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs)
{ return (MatConstIterator_<_Tp>&)((const MatConstIterator&)a + ofs); }
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; }
template<typename _Tp> static inline MatConstIterator_<_Tp>
operator + (ptrdiff_t ofs, const MatConstIterator_<_Tp>& a)
{ return (MatConstIterator_<_Tp>&)((const MatConstIterator&)a + ofs); }
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; }
template<typename _Tp> static inline MatConstIterator_<_Tp>
operator - (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs)
{ return (MatConstIterator_<_Tp>&)((const MatConstIterator&)a - ofs); }
{ MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatConstIterator_<_Tp>&)t; }
inline uchar* MatConstIterator::operator [](ptrdiff_t i) const
{ return *(*this + i); }
@ -1891,15 +1891,15 @@ template<typename _Tp> inline _Tp MatConstIterator_<_Tp>::operator [](ptrdiff_t
template<typename _Tp> static inline MatIterator_<_Tp>
operator + (const MatIterator_<_Tp>& a, ptrdiff_t ofs)
{ return (MatIterator_<_Tp>&)((const MatConstIterator&)a + ofs); }
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; }
template<typename _Tp> static inline MatIterator_<_Tp>
operator + (ptrdiff_t ofs, const MatIterator_<_Tp>& a)
{ return (MatIterator_<_Tp>&)((const MatConstIterator&)a + ofs); }
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; }
template<typename _Tp> static inline MatIterator_<_Tp>
operator - (const MatIterator_<_Tp>& a, ptrdiff_t ofs)
{ return (MatIterator_<_Tp>&)((const MatConstIterator&)a - ofs); }
{ MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatIterator_<_Tp>&)t; }
template<typename _Tp> inline _Tp& MatIterator_<_Tp>::operator [](ptrdiff_t i) const
{ return *(*this + i); }

File diff suppressed because it is too large Load Diff

@ -1296,8 +1296,8 @@ inRangeS_( const Mat& srcmat1, const Scalar& _a, const Scalar& _b, Mat& dstmat )
size_t dstep = dstmat.step;
Size size = getContinuousSize( srcmat1, dstmat );
int cn = srcmat1.channels();
_a.convertTo((WT1*)&a, cn);
_b.convertTo((WT1*)&b, cn);
scalarToRawData(_a, &a, CV_MAKETYPE(DataType<WT>::depth, cn));
scalarToRawData(_b, &b, CV_MAKETYPE(DataType<WT>::depth, cn));
for( int y = 0; y < size.height; y++, dst += dstep )
{

@ -759,6 +759,81 @@ int Mat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) con
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
? (int)(total()*channels()/_elemChannels) : -1;
}
void scalarToRawData(const Scalar& s, void* _buf, int type, int unroll_to)
{
int i, depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert(cn <= 4);
switch(depth)
{
case CV_8U:
{
uchar* buf = (uchar*)_buf;
for(i = 0; i < cn; i++)
buf[i] = saturate_cast<uchar>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
}
break;
case CV_8S:
{
schar* buf = (schar*)_buf;
for(i = 0; i < cn; i++)
buf[i] = saturate_cast<schar>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
}
break;
case CV_16U:
{
ushort* buf = (ushort*)_buf;
for(i = 0; i < cn; i++)
buf[i] = saturate_cast<ushort>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
}
break;
case CV_16S:
{
short* buf = (short*)_buf;
for(i = 0; i < cn; i++)
buf[i] = saturate_cast<short>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
}
break;
case CV_32S:
{
int* buf = (int*)_buf;
for(i = 0; i < cn; i++)
buf[i] = saturate_cast<int>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
}
break;
case CV_32F:
{
float* buf = (float*)_buf;
for(i = 0; i < cn; i++)
buf[i] = saturate_cast<float>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
}
break;
case CV_64F:
{
double* buf = (double*)_buf;
for(i = 0; i < cn; i++)
buf[i] = saturate_cast<double>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
break;
}
default:
CV_Error(CV_StsUnsupportedFormat,"");
}
}
/*************************************************************************************************\
Matrix Operations

@ -325,7 +325,7 @@ binarySOpCn_( const Mat& srcmat, Mat& dstmat, const Scalar& _scalar )
int cn = dstmat.channels();
Size size = getContinuousSize( srcmat, dstmat, cn );
WT scalar[12];
_scalar.convertTo(scalar, cn, 12);
scalarToRawData(_scalar, scalar, CV_MAKETYPE(DataType<WT>::depth,cn), 12);
for( ; size.height--; src0 += step1, dst0 += step )
{

@ -156,7 +156,7 @@ public:
{
int index_type;
load_value(stream,index_type);
IndexParams* params = ParamsFactory::instance().create((flann_algorithm_t)index_type);
IndexParams* params = ParamsFactory_instance().create((flann_algorithm_t)index_type);
bestIndex = create_index_by_type(dataset, *params);
bestIndex->loadIndex(stream);
load_value(stream, bestSearchParams);

@ -123,7 +123,7 @@ NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const string& filename)
throw FLANNException("The index saved belongs to a different dataset");
}
IndexParams* params = ParamsFactory::instance().create(header.index_type);
IndexParams* params = ParamsFactory_instance().create(header.index_type);
NNIndex<T>* nnIndex = create_index_by_type(dataset, *params);
nnIndex->loadIndex(fin);
fclose(fin);

@ -134,7 +134,7 @@ public:
typedef ObjectFactory<IndexParams, flann_algorithm_t> ParamsFactory;
CV_EXPORTS ParamsFactory& ParamsFactory_instance();
struct CV_EXPORTS SearchParams {
SearchParams(int checks_ = 32) :

@ -50,7 +50,7 @@ class ObjectFactory
std::map<UniqueIdType, CreateObjectFunc> object_registry;
// singleton class, private constructor
ObjectFactory() {};
//ObjectFactory() {};
public:
typedef typename std::map<UniqueIdType, CreateObjectFunc>::iterator Iterator;
@ -81,11 +81,11 @@ public:
return ((*iter).second)();
}
static ObjectFactory<BaseClass,UniqueIdType>& instance()
/*static ObjectFactory<BaseClass,UniqueIdType>& instance()
{
static ObjectFactory<BaseClass,UniqueIdType> the_factory;
return the_factory;
}
}*/
};

@ -195,16 +195,24 @@ void set_distance_type(flann_distance_t distance_type, int order)
flann_minkowski_order_ = order;
}
static ParamsFactory the_factory;
ParamsFactory& ParamsFactory_instance()
{
return the_factory;
}
class StaticInit
{
public:
StaticInit()
{
ParamsFactory::instance().register_<LinearIndexParams>(LINEAR);
ParamsFactory::instance().register_<KDTreeIndexParams>(KDTREE);
ParamsFactory::instance().register_<KMeansIndexParams>(KMEANS);
ParamsFactory::instance().register_<CompositeIndexParams>(COMPOSITE);
ParamsFactory::instance().register_<AutotunedIndexParams>(AUTOTUNED);
ParamsFactory_instance().register_<LinearIndexParams>(LINEAR);
ParamsFactory_instance().register_<KDTreeIndexParams>(KDTREE);
ParamsFactory_instance().register_<KMeansIndexParams>(KMEANS);
ParamsFactory_instance().register_<CompositeIndexParams>(COMPOSITE);
ParamsFactory_instance().register_<AutotunedIndexParams>(AUTOTUNED);
// ParamsFactory::instance().register_<SavedIndexParams>(SAVED);
}
};

@ -188,7 +188,7 @@ CvGBTrees::train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx,
const CvMat* _sample_idx, const CvMat* _var_type,
const CvMat* _missing_mask,
CvGBTreesParams _params, bool _update ) //update is not supported
CvGBTreesParams _params, bool /*_update*/ ) //update is not supported
{
CvMemStorage* storage = 0;
@ -1071,7 +1071,7 @@ bool CvGBTrees::train( const cv::Mat& trainData, int tflag,
bool update )
{
CvMat _trainData = trainData, _responses = responses;
CvMat _varIdx = varIdx, _sampleIdx = sampleIdx, _varType = _varType;
CvMat _varIdx = varIdx, _sampleIdx = sampleIdx, _varType = varType;
CvMat _missingDataMask = missingDataMask;
return train(&_trainData, tflag, &_responses, varIdx.empty() ? &_varIdx : 0,

Loading…
Cancel
Save