Merge pull request #22482 from Glutamat42:tutorial_generalized_hough_transform

Tutorial for Generalized Hough Ballard and Guil Transform
pull/22504/head
Alexander Smorkalov 2 years ago committed by GitHub
commit d885242b61
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 92
      doc/tutorials/imgproc/generalized_hough_ballard_guil/generalized_hough_ballard_guil.markdown
  2. BIN
      doc/tutorials/imgproc/generalized_hough_ballard_guil/images/generalized_hough_image.jpg
  3. BIN
      doc/tutorials/imgproc/generalized_hough_ballard_guil/images/generalized_hough_less_perfect_result_img.jpg
  4. BIN
      doc/tutorials/imgproc/generalized_hough_ballard_guil/images/generalized_hough_mini_image.jpg
  5. BIN
      doc/tutorials/imgproc/generalized_hough_ballard_guil/images/generalized_hough_mini_template.jpg
  6. BIN
      doc/tutorials/imgproc/generalized_hough_ballard_guil/images/generalized_hough_result_img.jpg
  7. BIN
      doc/tutorials/imgproc/generalized_hough_ballard_guil/images/generalized_hough_template.jpg
  8. 2
      doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.markdown
  9. 2
      doc/tutorials/imgproc/imgtrans/remap/remap.markdown
  10. 10
      doc/tutorials/imgproc/table_of_content_imgproc.markdown
  11. 1
      doc/tutorials/objdetect/traincascade.markdown
  12. 108
      samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp

@ -0,0 +1,92 @@
Object detection with Generalized Ballard and Guil Hough Transform {#tutorial_generalized_hough_ballard_guil}
==================================================================
@tableofcontents
@prev_tutorial{tutorial_hough_circle}
@next_tutorial{tutorial_remap}
Goal
----
In this tutorial you will learn how to:
- Use @ref cv::GeneralizedHoughBallard and @ref cv::GeneralizedHoughGuil to detect an object
Example
-------
### What does this program do?
1. Load the image and template
![image](images/generalized_hough_mini_image.jpg)
![template](images/generalized_hough_mini_template.jpg)
2. Instantiate @ref cv::GeneralizedHoughBallard with the help of `createGeneralizedHoughBallard()`
3. Instantiate @ref cv::GeneralizedHoughGuil with the help of `createGeneralizedHoughGuil()`
4. Set the required parameters for both GeneralizedHough variants
5. Detect and show found results
@note
- Both variants can't be instantiated directly. Using the create methods is required.
- Guil Hough is very slow. Calculating the results for the "mini" files used in this tutorial
takes only a few seconds. With image and template in a higher resolution, as shown below,
my notebook requires about 5 minutes to calculate a result.
![image](images/generalized_hough_image.jpg)
![template](images/generalized_hough_template.jpg)
### Code
The complete code for this tutorial is shown below.
@include samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp
Explanation
-----------
### Load image, template and setup variables
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-load-and-setup
The position vectors will contain the matches the detectors will find.
Every entry contains four floating point values:
position vector
- *[0]*: x coordinate of center point
- *[1]*: y coordinate of center point
- *[2]*: scale of detected object compared to template
- *[3]*: rotation of detected object in degree in relation to template
An example could look as follows: `[200, 100, 0.9, 120]`
### Setup parameters
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-setup-parameters
Finding the optimal values can end up in trial and error and depends on many factors, such as the image resolution.
### Run detection
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-run
As mentioned above, this step will take some time, especially with larger images and when using Guil.
### Draw results and show image
@snippet samples/cpp/tutorial_code/ImgTrans/generalizedHoughTransform.cpp generalized-hough-transform-draw-results
Result
------
![result image](images/generalized_hough_result_img.jpg)
The blue rectangle shows the result of @ref cv::GeneralizedHoughBallard and the green rectangles the results of @ref
cv::GeneralizedHoughGuil.
Getting perfect results like in this example is unlikely if the parameters are not perfectly adapted to the sample.
An example with less perfect parameters is shown below.
For the Ballard variant, only the center of the result is marked as a black dot on this image. The rectangle would be
the same as on the previous image.
![less perfect result](images/generalized_hough_less_perfect_result_img.jpg)

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

@ -2,7 +2,7 @@ Hough Circle Transform {#tutorial_hough_circle}
======================
@prev_tutorial{tutorial_hough_lines}
@next_tutorial{tutorial_remap}
@next_tutorial{tutorial_generalized_hough_ballard_guil}
Goal
----

@ -1,7 +1,7 @@
Remapping {#tutorial_remap}
=========
@prev_tutorial{tutorial_hough_circle}
@prev_tutorial{tutorial_generalized_hough_ballard_guil}
@next_tutorial{tutorial_warp_affine}
Goal

@ -173,6 +173,16 @@ In this section you will learn about the image processing (manipulation) functio
Where we learn how to detect circles
- @subpage tutorial_generalized_hough_ballard_guil
*Languages:* C++
*Compatibility:* \>= OpenCV 3.4
*Author:* Markus Heck
Detect an object in a picture with the help of GeneralizedHoughBallard and GeneralizedHoughGuil.
- @subpage tutorial_remap
*Languages:* C++, Java, Python

@ -3,6 +3,7 @@ Cascade Classifier Training {#tutorial_traincascade}
@prev_tutorial{tutorial_cascade_classifier}
Introduction
------------

@ -0,0 +1,108 @@
/**
@file generalizedHoughTransform.cpp
@author Markus Heck
@brief Detects an object, given by a template, in an image using GeneralizedHoughBallard and GeneralizedHoughGuil.
*/
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
using namespace cv;
using namespace std;
int main() {
//! [generalized-hough-transform-load-and-setup]
// load source image and grayscale template
Mat image = imread("images/generalized_hough_mini_image.jpg");
Mat templ = imread("images/generalized_hough_mini_template.jpg", IMREAD_GRAYSCALE);
// create grayscale image
Mat grayImage;
cvtColor(image, grayImage, COLOR_RGB2GRAY);
// create variable for location, scale and rotation of detected templates
vector<Vec4f> positionBallard, positionGuil;
// template width and height
int w = templ.cols;
int h = templ.rows;
//! [generalized-hough-transform-load-and-setup]
//! [generalized-hough-transform-setup-parameters]
// create ballard and set options
Ptr<GeneralizedHoughBallard> ballard = createGeneralizedHoughBallard();
ballard->setMinDist(10);
ballard->setLevels(360);
ballard->setDp(2);
ballard->setMaxBufferSize(1000);
ballard->setVotesThreshold(40);
ballard->setCannyLowThresh(30);
ballard->setCannyHighThresh(110);
ballard->setTemplate(templ);
// create guil and set options
Ptr<GeneralizedHoughGuil> guil = createGeneralizedHoughGuil();
guil->setMinDist(10);
guil->setLevels(360);
guil->setDp(3);
guil->setMaxBufferSize(1000);
guil->setMinAngle(0);
guil->setMaxAngle(360);
guil->setAngleStep(1);
guil->setAngleThresh(1500);
guil->setMinScale(0.5);
guil->setMaxScale(2.0);
guil->setScaleStep(0.05);
guil->setScaleThresh(50);
guil->setPosThresh(10);
guil->setCannyLowThresh(30);
guil->setCannyHighThresh(110);
guil->setTemplate(templ);
//! [generalized-hough-transform-setup-parameters]
//! [generalized-hough-transform-run]
// execute ballard detection
ballard->detect(grayImage, positionBallard);
// execute guil detection
guil->detect(grayImage, positionGuil);
//! [generalized-hough-transform-run]
//! [generalized-hough-transform-draw-results]
// draw ballard
for (vector<Vec4f>::iterator iter = positionBallard.begin(); iter != positionBallard.end(); ++iter) {
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
Size2f(w * (*iter)[2], h * (*iter)[2]),
(*iter)[3]);
Point2f vertices[4];
rRect.points(vertices);
for (int i = 0; i < 4; i++)
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255, 0, 0), 6);
}
// draw guil
for (vector<Vec4f>::iterator iter = positionGuil.begin(); iter != positionGuil.end(); ++iter) {
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
Size2f(w * (*iter)[2], h * (*iter)[2]),
(*iter)[3]);
Point2f vertices[4];
rRect.points(vertices);
for (int i = 0; i < 4; i++)
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(0, 255, 0), 2);
}
imshow("result_img", image);
waitKey();
//! [generalized-hough-transform-draw-results]
return EXIT_SUCCESS;
}
Loading…
Cancel
Save