mirror of https://github.com/opencv/opencv.git
* use different approaches -> threads and streams * clean up codepull/1355/head
parent
cd5b8af609
commit
d87eb75904
1 changed files with 448 additions and 101 deletions
@ -1,149 +1,496 @@ |
||||
/* This sample demonstrates working on one piece of data using two GPUs.
|
||||
It splits input into two parts and processes them separately on different |
||||
GPUs. */ |
||||
// This sample demonstrates working on one piece of data using two GPUs.
|
||||
// It splits input into two parts and processes them separately on different GPUs.
|
||||
|
||||
// Disable some warnings which are caused with CUDA headers
|
||||
#if defined(_MSC_VER) |
||||
#pragma warning(disable: 4201 4408 4100) |
||||
#ifdef WIN32 |
||||
#define NOMINMAX |
||||
#include <windows.h> |
||||
#else |
||||
#include <pthread.h> |
||||
#include <unistd.h> |
||||
#endif |
||||
|
||||
#include <iostream> |
||||
#include "cvconfig.h" |
||||
#include <iomanip> |
||||
|
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include "opencv2/contrib/contrib.hpp" |
||||
#include "opencv2/gpu/gpu.hpp" |
||||
|
||||
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB) |
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Thread
|
||||
// OS-specific wrappers for multi-threading
|
||||
|
||||
int main() |
||||
#ifdef WIN32 |
||||
class Thread |
||||
{ |
||||
#if !defined(HAVE_CUDA) |
||||
std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n"; |
||||
#endif |
||||
struct UserData |
||||
{ |
||||
void (*func)(void* userData); |
||||
void* param; |
||||
}; |
||||
|
||||
static DWORD WINAPI WinThreadFunction(LPVOID lpParam) |
||||
{ |
||||
UserData* userData = static_cast<UserData*>(lpParam); |
||||
|
||||
userData->func(userData->param); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
UserData userData_; |
||||
HANDLE thread_; |
||||
DWORD threadId_; |
||||
|
||||
public: |
||||
Thread(void (*func)(void* userData), void* userData) |
||||
{ |
||||
userData_.func = func; |
||||
userData_.param = userData; |
||||
|
||||
thread_ = CreateThread( |
||||
NULL, // default security attributes
|
||||
0, // use default stack size
|
||||
WinThreadFunction, // thread function name
|
||||
&userData_, // argument to thread function
|
||||
0, // use default creation flags
|
||||
&threadId_); // returns the thread identifier
|
||||
} |
||||
|
||||
~Thread() |
||||
{ |
||||
CloseHandle(thread_); |
||||
} |
||||
|
||||
void wait() |
||||
{ |
||||
WaitForSingleObject(thread_, INFINITE); |
||||
} |
||||
}; |
||||
#else |
||||
class Thread |
||||
{ |
||||
struct UserData |
||||
{ |
||||
void (*func)(void* userData); |
||||
void* param; |
||||
}; |
||||
|
||||
static void* PThreadFunction(void* lpParam) |
||||
{ |
||||
UserData* userData = static_cast<UserData*>(lpParam); |
||||
|
||||
userData->func(userData->param); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
pthread_t thread_; |
||||
UserData userData_; |
||||
|
||||
public: |
||||
Thread(void (*func)(void* userData), void* userData) |
||||
{ |
||||
userData_.func = func; |
||||
userData_.param = userData; |
||||
|
||||
pthread_create(&thread_, NULL, PThreadFunction, &userData_); |
||||
} |
||||
|
||||
#if !defined(HAVE_TBB) |
||||
std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n"; |
||||
~Thread() |
||||
{ |
||||
pthread_detach(thread_); |
||||
} |
||||
|
||||
void wait() |
||||
{ |
||||
pthread_join(thread_, NULL); |
||||
} |
||||
}; |
||||
#endif |
||||
|
||||
return 0; |
||||
///////////////////////////////////////////////////////////
|
||||
// StereoSingleGpu
|
||||
// Run Stereo algorithm on single GPU
|
||||
|
||||
class StereoSingleGpu |
||||
{ |
||||
public: |
||||
explicit StereoSingleGpu(int deviceId = 0); |
||||
~StereoSingleGpu(); |
||||
|
||||
void compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity); |
||||
|
||||
private: |
||||
int deviceId_; |
||||
GpuMat d_leftFrame; |
||||
GpuMat d_rightFrame; |
||||
GpuMat d_disparity; |
||||
Ptr<StereoBM_GPU> d_alg; |
||||
}; |
||||
|
||||
StereoSingleGpu::StereoSingleGpu(int deviceId) : deviceId_(deviceId) |
||||
{ |
||||
gpu::setDevice(deviceId_); |
||||
d_alg = new StereoBM_GPU(StereoBM_GPU::BASIC_PRESET, 256); |
||||
} |
||||
|
||||
#else |
||||
StereoSingleGpu::~StereoSingleGpu() |
||||
{ |
||||
gpu::setDevice(deviceId_); |
||||
d_leftFrame.release(); |
||||
d_rightFrame.release(); |
||||
d_disparity.release(); |
||||
d_alg.release(); |
||||
} |
||||
|
||||
#include "opencv2/core/internal.hpp" // For TBB wrappers |
||||
void StereoSingleGpu::compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity) |
||||
{ |
||||
gpu::setDevice(deviceId_); |
||||
d_leftFrame.upload(leftFrame); |
||||
d_rightFrame.upload(rightFrame); |
||||
(*d_alg)(d_leftFrame, d_rightFrame, d_disparity); |
||||
d_disparity.download(disparity); |
||||
} |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
///////////////////////////////////////////////////////////
|
||||
// StereoMultiGpuThread
|
||||
// Run Stereo algorithm on two GPUs using different host threads
|
||||
|
||||
class StereoMultiGpuThread |
||||
{ |
||||
public: |
||||
StereoMultiGpuThread(); |
||||
~StereoMultiGpuThread(); |
||||
|
||||
void compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity); |
||||
|
||||
private: |
||||
GpuMat d_leftFrames[2]; |
||||
GpuMat d_rightFrames[2]; |
||||
GpuMat d_disparities[2]; |
||||
Ptr<StereoBM_GPU> d_algs[2]; |
||||
|
||||
struct StereoLaunchData |
||||
{ |
||||
int deviceId; |
||||
Mat leftFrame; |
||||
Mat rightFrame; |
||||
Mat disparity; |
||||
GpuMat* d_leftFrame; |
||||
GpuMat* d_rightFrame; |
||||
GpuMat* d_disparity; |
||||
Ptr<StereoBM_GPU> d_alg; |
||||
}; |
||||
|
||||
static void launchGpuStereoAlg(void* userData); |
||||
}; |
||||
|
||||
StereoMultiGpuThread::StereoMultiGpuThread() |
||||
{ |
||||
gpu::setDevice(0); |
||||
d_algs[0] = new StereoBM_GPU(StereoBM_GPU::BASIC_PRESET, 256); |
||||
|
||||
gpu::setDevice(1); |
||||
d_algs[1] = new StereoBM_GPU(StereoBM_GPU::BASIC_PRESET, 256); |
||||
} |
||||
|
||||
StereoMultiGpuThread::~StereoMultiGpuThread() |
||||
{ |
||||
gpu::setDevice(0); |
||||
d_leftFrames[0].release(); |
||||
d_rightFrames[0].release(); |
||||
d_disparities[0].release(); |
||||
d_algs[0].release(); |
||||
|
||||
gpu::setDevice(1); |
||||
d_leftFrames[1].release(); |
||||
d_rightFrames[1].release(); |
||||
d_disparities[1].release(); |
||||
d_algs[1].release(); |
||||
} |
||||
|
||||
void StereoMultiGpuThread::compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity) |
||||
{ |
||||
disparity.create(leftFrame.size(), CV_8UC1); |
||||
|
||||
// Split input data onto two parts for each GPUs.
|
||||
// We add small border for each part,
|
||||
// because original algorithm doesn't calculate disparity on image borders.
|
||||
// With such padding we will get output in the middle of final result.
|
||||
|
||||
StereoLaunchData launchDatas[2]; |
||||
|
||||
launchDatas[0].deviceId = 0; |
||||
launchDatas[0].leftFrame = leftFrame.rowRange(0, leftFrame.rows / 2 + 32); |
||||
launchDatas[0].rightFrame = rightFrame.rowRange(0, rightFrame.rows / 2 + 32); |
||||
launchDatas[0].disparity = disparity.rowRange(0, leftFrame.rows / 2); |
||||
launchDatas[0].d_leftFrame = &d_leftFrames[0]; |
||||
launchDatas[0].d_rightFrame = &d_rightFrames[0]; |
||||
launchDatas[0].d_disparity = &d_disparities[0]; |
||||
launchDatas[0].d_alg = d_algs[0]; |
||||
|
||||
launchDatas[1].deviceId = 1; |
||||
launchDatas[1].leftFrame = leftFrame.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows); |
||||
launchDatas[1].rightFrame = rightFrame.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows); |
||||
launchDatas[1].disparity = disparity.rowRange(leftFrame.rows / 2, leftFrame.rows); |
||||
launchDatas[1].d_leftFrame = &d_leftFrames[1]; |
||||
launchDatas[1].d_rightFrame = &d_rightFrames[1]; |
||||
launchDatas[1].d_disparity = &d_disparities[1]; |
||||
launchDatas[1].d_alg = d_algs[1]; |
||||
|
||||
struct Worker { void operator()(int device_id) const; }; |
||||
Thread thread0(launchGpuStereoAlg, &launchDatas[0]); |
||||
Thread thread1(launchGpuStereoAlg, &launchDatas[1]); |
||||
|
||||
// GPUs data
|
||||
GpuMat d_left[2]; |
||||
GpuMat d_right[2]; |
||||
StereoBM_GPU* bm[2]; |
||||
GpuMat d_result[2]; |
||||
thread0.wait(); |
||||
thread1.wait(); |
||||
} |
||||
|
||||
static void printHelp() |
||||
void StereoMultiGpuThread::launchGpuStereoAlg(void* userData) |
||||
{ |
||||
std::cout << "Usage: stereo_multi_gpu --left <image> --right <image>\n"; |
||||
StereoLaunchData* data = static_cast<StereoLaunchData*>(userData); |
||||
|
||||
gpu::setDevice(data->deviceId); |
||||
data->d_leftFrame->upload(data->leftFrame); |
||||
data->d_rightFrame->upload(data->rightFrame); |
||||
(*data->d_alg)(*data->d_leftFrame, *data->d_rightFrame, *data->d_disparity); |
||||
|
||||
if (data->deviceId == 0) |
||||
data->d_disparity->rowRange(0, data->d_disparity->rows - 32).download(data->disparity); |
||||
else |
||||
data->d_disparity->rowRange(32, data->d_disparity->rows).download(data->disparity); |
||||
} |
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// StereoMultiGpuStream
|
||||
// Run Stereo algorithm on two GPUs from single host thread using async API
|
||||
|
||||
class StereoMultiGpuStream |
||||
{ |
||||
public: |
||||
StereoMultiGpuStream(); |
||||
~StereoMultiGpuStream(); |
||||
|
||||
void compute(const CudaMem& leftFrame, const CudaMem& rightFrame, CudaMem& disparity); |
||||
|
||||
private: |
||||
GpuMat d_leftFrames[2]; |
||||
GpuMat d_rightFrames[2]; |
||||
GpuMat d_disparities[2]; |
||||
Ptr<StereoBM_GPU> d_algs[2]; |
||||
Ptr<Stream> streams[2]; |
||||
}; |
||||
|
||||
StereoMultiGpuStream::StereoMultiGpuStream() |
||||
{ |
||||
gpu::setDevice(0); |
||||
d_algs[0] = new StereoBM_GPU(StereoBM_GPU::BASIC_PRESET, 256); |
||||
streams[0] = new Stream; |
||||
|
||||
gpu::setDevice(1); |
||||
d_algs[1] = new StereoBM_GPU(StereoBM_GPU::BASIC_PRESET, 256); |
||||
streams[1] = new Stream; |
||||
} |
||||
|
||||
StereoMultiGpuStream::~StereoMultiGpuStream() |
||||
{ |
||||
gpu::setDevice(0); |
||||
d_leftFrames[0].release(); |
||||
d_rightFrames[0].release(); |
||||
d_disparities[0].release(); |
||||
d_algs[0].release(); |
||||
streams[0].release(); |
||||
|
||||
gpu::setDevice(1); |
||||
d_leftFrames[1].release(); |
||||
d_rightFrames[1].release(); |
||||
d_disparities[1].release(); |
||||
d_algs[1].release(); |
||||
streams[1].release(); |
||||
} |
||||
|
||||
void StereoMultiGpuStream::compute(const CudaMem& leftFrame, const CudaMem& rightFrame, CudaMem& disparity) |
||||
{ |
||||
disparity.create(leftFrame.size(), CV_8UC1); |
||||
|
||||
// Split input data onto two parts for each GPUs.
|
||||
// We add small border for each part,
|
||||
// because original algorithm doesn't calculate disparity on image borders.
|
||||
// With such padding we will get output in the middle of final result.
|
||||
|
||||
Mat leftFrameHdr = leftFrame.createMatHeader(); |
||||
Mat rightFrameHdr = rightFrame.createMatHeader(); |
||||
Mat disparityHdr = disparity.createMatHeader(); |
||||
Mat disparityPart0 = disparityHdr.rowRange(0, leftFrame.rows / 2); |
||||
Mat disparityPart1 = disparityHdr.rowRange(leftFrame.rows / 2, leftFrame.rows); |
||||
|
||||
gpu::setDevice(0); |
||||
streams[0]->enqueueUpload(leftFrameHdr.rowRange(0, leftFrame.rows / 2 + 32), d_leftFrames[0]); |
||||
streams[0]->enqueueUpload(rightFrameHdr.rowRange(0, leftFrame.rows / 2 + 32), d_rightFrames[0]); |
||||
(*d_algs[0])(d_leftFrames[0], d_rightFrames[0], d_disparities[0], *streams[0]); |
||||
streams[0]->enqueueDownload(d_disparities[0].rowRange(0, leftFrame.rows / 2), disparityPart0); |
||||
|
||||
gpu::setDevice(1); |
||||
streams[1]->enqueueUpload(leftFrameHdr.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows), d_leftFrames[1]); |
||||
streams[1]->enqueueUpload(rightFrameHdr.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows), d_rightFrames[1]); |
||||
(*d_algs[1])(d_leftFrames[1], d_rightFrames[1], d_disparities[1], *streams[1]); |
||||
streams[1]->enqueueDownload(d_disparities[1].rowRange(32, d_disparities[1].rows), disparityPart1); |
||||
|
||||
gpu::setDevice(0); |
||||
streams[0]->waitForCompletion(); |
||||
|
||||
gpu::setDevice(1); |
||||
streams[1]->waitForCompletion(); |
||||
} |
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// main
|
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
if (argc < 5) |
||||
if (argc != 3) |
||||
{ |
||||
printHelp(); |
||||
cerr << "Usage: stereo_multi_gpu <left_video> <right_video>" << endl; |
||||
return -1; |
||||
} |
||||
|
||||
int num_devices = getCudaEnabledDeviceCount(); |
||||
if (num_devices < 2) |
||||
const int numDevices = getCudaEnabledDeviceCount(); |
||||
if (numDevices != 2) |
||||
{ |
||||
std::cout << "Two or more GPUs are required\n"; |
||||
cerr << "Two GPUs are required" << endl; |
||||
return -1; |
||||
} |
||||
for (int i = 0; i < num_devices; ++i) |
||||
{ |
||||
cv::gpu::printShortCudaDeviceInfo(i); |
||||
|
||||
DeviceInfo dev_info(i); |
||||
if (!dev_info.isCompatible()) |
||||
for (int i = 0; i < numDevices; ++i) |
||||
{ |
||||
DeviceInfo devInfo(i); |
||||
if (!devInfo.isCompatible()) |
||||
{ |
||||
std::cout << "GPU module isn't built for GPU #" << i << " (" |
||||
<< dev_info.name() << ", CC " << dev_info.majorVersion() |
||||
<< dev_info.minorVersion() << "\n"; |
||||
cerr << "GPU module was't built for GPU #" << i << " (" |
||||
<< devInfo.name() << ", CC " << devInfo.majorVersion() |
||||
<< devInfo.minorVersion() << endl; |
||||
return -1; |
||||
} |
||||
|
||||
printShortCudaDeviceInfo(i); |
||||
} |
||||
|
||||
// Load input data
|
||||
Mat left, right; |
||||
for (int i = 1; i < argc; ++i) |
||||
VideoCapture leftVideo(argv[1]); |
||||
VideoCapture rightVideo(argv[2]); |
||||
|
||||
if (!leftVideo.isOpened()) |
||||
{ |
||||
if (string(argv[i]) == "--left") |
||||
{ |
||||
left = imread(argv[++i], CV_LOAD_IMAGE_GRAYSCALE); |
||||
CV_Assert(!left.empty()); |
||||
} |
||||
else if (string(argv[i]) == "--right") |
||||
{ |
||||
right = imread(argv[++i], CV_LOAD_IMAGE_GRAYSCALE); |
||||
CV_Assert(!right.empty()); |
||||
} |
||||
else if (string(argv[i]) == "--help") |
||||
cerr << "Can't open " << argv[1] << " video file" << endl; |
||||
return -1; |
||||
} |
||||
|
||||
if (!rightVideo.isOpened()) |
||||
{ |
||||
cerr << "Can't open " << argv[2] << " video file" << endl; |
||||
return -1; |
||||
} |
||||
|
||||
cout << endl; |
||||
cout << "This sample demonstrates working on one piece of data using two GPUs." << endl; |
||||
cout << "It splits input into two parts and processes them separately on different GPUs." << endl; |
||||
cout << endl; |
||||
|
||||
Mat leftFrame, rightFrame; |
||||
CudaMem leftGrayFrame, rightGrayFrame; |
||||
|
||||
StereoSingleGpu gpu0Alg(0); |
||||
StereoSingleGpu gpu1Alg(1); |
||||
StereoMultiGpuThread multiThreadAlg; |
||||
StereoMultiGpuStream multiStreamAlg; |
||||
|
||||
Mat disparityGpu0; |
||||
Mat disparityGpu1; |
||||
Mat disparityMultiThread; |
||||
CudaMem disparityMultiStream; |
||||
|
||||
Mat disparityGpu0Show; |
||||
Mat disparityGpu1Show; |
||||
Mat disparityMultiThreadShow; |
||||
Mat disparityMultiStreamShow; |
||||
|
||||
TickMeter tm; |
||||
|
||||
cout << "-------------------------------------------------------------------" << endl; |
||||
cout << "| Frame | GPU 0 ms | GPU 1 ms | Multi Thread ms | Multi Stream ms |" << endl; |
||||
cout << "-------------------------------------------------------------------" << endl; |
||||
|
||||
for (int i = 0;; ++i) |
||||
{ |
||||
leftVideo >> leftFrame; |
||||
rightVideo >> rightFrame; |
||||
|
||||
if (leftFrame.empty() || rightFrame.empty()) |
||||
break; |
||||
|
||||
if (leftFrame.size() != rightFrame.size()) |
||||
{ |
||||
printHelp(); |
||||
cerr << "Frames have different sizes" << endl; |
||||
return -1; |
||||
} |
||||
} |
||||
|
||||
// Split source images for processing on the GPU #0
|
||||
setDevice(0); |
||||
d_left[0].upload(left.rowRange(0, left.rows / 2)); |
||||
d_right[0].upload(right.rowRange(0, right.rows / 2)); |
||||
bm[0] = new StereoBM_GPU(); |
||||
|
||||
// Split source images for processing on the GPU #1
|
||||
setDevice(1); |
||||
d_left[1].upload(left.rowRange(left.rows / 2, left.rows)); |
||||
d_right[1].upload(right.rowRange(right.rows / 2, right.rows)); |
||||
bm[1] = new StereoBM_GPU(); |
||||
|
||||
// Execute calculation in two threads using two GPUs
|
||||
int devices[] = {0, 1}; |
||||
parallel_do(devices, devices + 2, Worker()); |
||||
|
||||
// Release the first GPU resources
|
||||
setDevice(0); |
||||
imshow("GPU #0 result", Mat(d_result[0])); |
||||
d_left[0].release(); |
||||
d_right[0].release(); |
||||
d_result[0].release(); |
||||
delete bm[0]; |
||||
|
||||
// Release the second GPU resources
|
||||
setDevice(1); |
||||
imshow("GPU #1 result", Mat(d_result[1])); |
||||
d_left[1].release(); |
||||
d_right[1].release(); |
||||
d_result[1].release(); |
||||
delete bm[1]; |
||||
|
||||
waitKey(); |
||||
return 0; |
||||
} |
||||
leftGrayFrame.create(leftFrame.size(), CV_8UC1); |
||||
rightGrayFrame.create(leftFrame.size(), CV_8UC1); |
||||
|
||||
cvtColor(leftFrame, leftGrayFrame.createMatHeader(), COLOR_BGR2GRAY); |
||||
cvtColor(rightFrame, rightGrayFrame.createMatHeader(), COLOR_BGR2GRAY); |
||||
|
||||
void Worker::operator()(int device_id) const |
||||
{ |
||||
setDevice(device_id); |
||||
tm.reset(); tm.start(); |
||||
gpu0Alg.compute(leftGrayFrame, rightGrayFrame, disparityGpu0); |
||||
tm.stop(); |
||||
|
||||
bm[device_id]->operator()(d_left[device_id], d_right[device_id], |
||||
d_result[device_id]); |
||||
const double gpu0Time = tm.getTimeMilli(); |
||||
|
||||
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() |
||||
<< "): finished\n"; |
||||
} |
||||
tm.reset(); tm.start(); |
||||
gpu1Alg.compute(leftGrayFrame, rightGrayFrame, disparityGpu1); |
||||
tm.stop(); |
||||
|
||||
#endif |
||||
const double gpu1Time = tm.getTimeMilli(); |
||||
|
||||
tm.reset(); tm.start(); |
||||
multiThreadAlg.compute(leftGrayFrame, rightGrayFrame, disparityMultiThread); |
||||
tm.stop(); |
||||
|
||||
const double multiThreadTime = tm.getTimeMilli(); |
||||
|
||||
tm.reset(); tm.start(); |
||||
multiStreamAlg.compute(leftGrayFrame, rightGrayFrame, disparityMultiStream); |
||||
tm.stop(); |
||||
|
||||
const double multiStreamTime = tm.getTimeMilli(); |
||||
|
||||
cout << "| " << setw(5) << i << " | " |
||||
<< setw(8) << setprecision(1) << fixed << gpu0Time << " | " |
||||
<< setw(8) << setprecision(1) << fixed << gpu1Time << " | " |
||||
<< setw(15) << setprecision(1) << fixed << multiThreadTime << " | " |
||||
<< setw(15) << setprecision(1) << fixed << multiStreamTime << " |" << endl; |
||||
|
||||
resize(disparityGpu0, disparityGpu0Show, Size(1024, 768), 0, 0, INTER_AREA); |
||||
resize(disparityGpu1, disparityGpu1Show, Size(1024, 768), 0, 0, INTER_AREA); |
||||
resize(disparityMultiThread, disparityMultiThreadShow, Size(1024, 768), 0, 0, INTER_AREA); |
||||
resize(disparityMultiStream.createMatHeader(), disparityMultiStreamShow, Size(1024, 768), 0, 0, INTER_AREA); |
||||
|
||||
imshow("disparityGpu0", disparityGpu0Show); |
||||
imshow("disparityGpu1", disparityGpu1Show); |
||||
imshow("disparityMultiThread", disparityMultiThreadShow); |
||||
imshow("disparityMultiStream", disparityMultiStreamShow); |
||||
|
||||
const int key = waitKey(30) & 0xff; |
||||
if (key == 27) |
||||
break; |
||||
} |
||||
|
||||
cout << "-------------------------------------------------------------------" << endl; |
||||
|
||||
return 0; |
||||
} |
||||
|
Loading…
Reference in new issue