diff --git a/modules/dnn/src/cuda/shortcut.cu b/modules/dnn/src/cuda/shortcut.cu
new file mode 100644
index 0000000000..e2958627ab
--- /dev/null
+++ b/modules/dnn/src/cuda/shortcut.cu
@@ -0,0 +1,109 @@
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+
+#include <cuda_runtime.h>
+#include <cuda_fp16.h>
+
+#include "grid_stride_range.hpp"
+#include "execution.hpp"
+#include "vector_traits.hpp"
+
+#include "../cuda4dnn/csl/stream.hpp"
+#include "../cuda4dnn/csl/span.hpp"
+#include "../cuda4dnn/csl/tensor.hpp"
+
+#include <opencv2/core.hpp>
+
+using namespace cv::dnn::cuda4dnn::csl;
+using namespace cv::dnn::cuda4dnn::csl::device;
+
+namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
+
+namespace raw {
+    template <class T, std::size_t N>
+    __global__ void input_shortcut_vec(
+        Span<T> output,
+        View<T> input, index_type c_input, /* `c_input` = number of channels in `input` */
+        View<T> from, index_type c_from, /* `c_from` = number of channels in `from` */
+        size_type channel_stride /* common for both `input` and `from` */)
+    {
+        using vector_type = get_vector_type_t<T, N>;
+
+        auto output_vPtr = vector_type::get_pointer(output.data());
+        auto input_vPtr = vector_type::get_pointer(input.data());
+        auto from_vPtr = vector_type::get_pointer(from.data());
+
+        auto batch_stride_input = c_input * channel_stride;
+        auto batch_stride_from = c_from * channel_stride;
+
+        for (auto i : grid_stride_range(output.size() / vector_type::size())) {
+            const auto actual_idx = i * vector_type::size();
+            const auto b = actual_idx / batch_stride_input; /* `input` and `output` have the same shape */
+            const auto c = (actual_idx % batch_stride_input) / channel_stride;
+            const auto c_offset = actual_idx % channel_stride;
+
+            vector_type vec_input;
+            v_load(vec_input, input_vPtr[i]);
+
+            /* We can break down the shortcut operation into two steps:
+             * - copy `input` to `output`
+             * - add `from` to corresponding channels in `output`
+             *
+             * In this scheme, only some channels in the `output` differ from `input`. They differ in the channels
+             * which have a corresponding channel in `from`.
+             */
+            if (c < c_from) {
+                const auto from_actual_idx = b * batch_stride_from + c * channel_stride + c_offset;
+                const auto from_vec_idx = from_actual_idx / vector_type::size();
+
+                vector_type vec_from;
+                v_load(vec_from, from_vPtr[from_vec_idx]);
+                for (int j = 0; j < vector_type::size(); j++)
+                    vec_input.data[j] += vec_from.data[j];
+            }
+
+            v_store(output_vPtr[i], vec_input);
+        }
+    }
+}
+
+template <class T, std::size_t N>
+void launch_vectorized_input_shortcut(const Stream& stream, Span<T> output, View<T> input, std::size_t c_input, View<T> from, std::size_t c_from, std::size_t channel_stride) {
+    CV_Assert(is_fully_aligned<T>(output, N));
+    CV_Assert(is_fully_aligned<T>(input, N));
+    CV_Assert(is_fully_aligned<T>(from, N));
+    CV_Assert(channel_stride % N == 0);
+
+    auto kernel = raw::input_shortcut_vec<T, N>;
+    auto policy = make_policy(kernel, output.size() / N, 0, stream);
+    launch_kernel(kernel, policy, output, input, c_input, from, c_from, channel_stride);
+}
+
+template <class T>
+void input_shortcut(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, csl::TensorView<T> from) {
+    CV_Assert(is_shape_same(output, input));
+    CV_Assert(output.rank() == from.rank());
+    for (int i = 0; i < output.rank(); i++) {
+        if (i != 1) {
+            CV_Assert(from.get_axis_size(i) == output.get_axis_size(i));
+        }
+    }
+
+    auto channel_stride = output.size_range(2, output.rank()); /* same for `output`, `input` and `from` */
+    auto c_input = input.get_axis_size(1);
+    auto c_from = from.get_axis_size(1);
+
+    if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4) && is_fully_aligned<T>(from, 4) && channel_stride % 4 == 0) {
+        launch_vectorized_input_shortcut<T, 4>(stream, output, input, c_input, from, c_from, channel_stride);
+    } else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2) && is_fully_aligned<T>(from, 2) && channel_stride % 2 == 0) {
+        launch_vectorized_input_shortcut<T, 2>(stream, output, input, c_input, from, c_from, channel_stride);
+    } else {
+        launch_vectorized_input_shortcut<T, 1>(stream, output, input, c_input, from, c_from, channel_stride);
+    }
+}
+
+template void input_shortcut(const Stream&, TensorSpan<__half>, TensorView<__half>, TensorView<__half>);
+template void input_shortcut(const Stream&, TensorSpan<float>, TensorView<float>, TensorView<float>);
+
+}}}} /* namespace cv::dnn::cuda4dnn::kernels */
diff --git a/modules/dnn/src/cuda4dnn/kernels/shortcut.hpp b/modules/dnn/src/cuda4dnn/kernels/shortcut.hpp
new file mode 100644
index 0000000000..169d7558a2
--- /dev/null
+++ b/modules/dnn/src/cuda4dnn/kernels/shortcut.hpp
@@ -0,0 +1,18 @@
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+
+#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SHORTCUT_HPP
+#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SHORTCUT_HPP
+
+#include "../csl/stream.hpp"
+#include "../csl/tensor.hpp"
+
+namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
+
+    template <class T>
+    void input_shortcut(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, csl::TensorView<T> from);
+
+}}}} /* namespace cv::dnn::cuda4dnn::kernels */
+
+#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SHORTCUT_HPP */
diff --git a/modules/dnn/src/cuda4dnn/primitives/shortcut.hpp b/modules/dnn/src/cuda4dnn/primitives/shortcut.hpp
new file mode 100644
index 0000000000..bfdabfc6bc
--- /dev/null
+++ b/modules/dnn/src/cuda4dnn/primitives/shortcut.hpp
@@ -0,0 +1,76 @@
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+
+#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHORTCUT_HPP
+#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHORTCUT_HPP
+
+#include "../../op_cuda.hpp"
+
+#include "../csl/stream.hpp"
+#include "../csl/tensor.hpp"
+#include "../csl/tensor_ops.hpp"
+
+#include "../kernels/shortcut.hpp"
+
+#include <opencv2/core.hpp>
+
+#include <utility>
+
+namespace cv { namespace dnn { namespace cuda4dnn {
+
+    template <class T>
+    class ShortcutOp final : public CUDABackendNode {
+    public:
+        using wrapper_type = GetCUDABackendWrapperType<T>;
+
+        ShortcutOp(csl::Stream stream_) : stream(std::move(stream_)) { }
+
+        void forward(
+            const std::vector<cv::Ptr<BackendWrapper>>& inputs,
+            const std::vector<cv::Ptr<BackendWrapper>>& outputs,
+            csl::Workspace& workspace) override
+        {
+            CV_Assert(outputs.size() == 1);
+
+            auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
+            auto output = output_wrapper->getSpan();
+
+            auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
+            auto input = input_wrapper->getView();
+
+            /* output shape is determined by the input shape */
+            CV_Assert(is_shape_same(output, input));
+
+            for (int i = 1; i < inputs.size(); i++)
+            {
+                auto from_wrapper = inputs[i].dynamicCast<wrapper_type>();
+                auto from = from_wrapper->getView();
+
+                CV_Assert(output.rank() == from.rank());
+                for (int i = 0; i < output.rank(); i++) {
+                    if (i != 1) {
+                        CV_Assert(from.get_axis_size(i) == output.get_axis_size(i));
+                    }
+                }
+
+                if (i == 1)
+                {
+                    /* optimized path for first two inputs */
+                    kernels::input_shortcut<T>(stream, output, input, from);
+                }
+                else
+                {
+                    kernels::input_shortcut<T>(stream, output, output, from);
+                }
+            }
+
+        }
+
+    private:
+        csl::Stream stream;
+    };
+
+}}} /* namespace cv::dnn::cuda4dnn */
+
+#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHORTCUT_HPP */
diff --git a/modules/dnn/src/layers/eltwise_layer.cpp b/modules/dnn/src/layers/eltwise_layer.cpp
index 81a947cd2f..6d2827c3a4 100644
--- a/modules/dnn/src/layers/eltwise_layer.cpp
+++ b/modules/dnn/src/layers/eltwise_layer.cpp
@@ -53,6 +53,7 @@
 
 #ifdef HAVE_CUDA
 #include "../cuda4dnn/primitives/eltwise.hpp"
+#include "../cuda4dnn/primitives/shortcut.hpp"
 using namespace cv::dnn::cuda4dnn;
 #endif
 
@@ -155,8 +156,14 @@ public:
 
     virtual bool supportBackend(int backendId) CV_OVERRIDE
     {
+        if (backendId == DNN_BACKEND_CUDA)
+        {
+            if(channelsModeInput == ELTWISE_CHANNNELS_INPUT_0 || channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
+                return op == SUM && coeffs.empty();
+            return channelsModeInput == ELTWISE_CHANNNELS_SAME;
+        }
+
         return backendId == DNN_BACKEND_OPENCV ||
-               backendId == DNN_BACKEND_CUDA ||
                (backendId == DNN_BACKEND_HALIDE && op != DIV) ||  // TODO: not implemented, see PR #15811
                ((((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (preferableTarget != DNN_TARGET_OPENCL || coeffs.empty()))
                 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && channelsMode == ELTWISE_CHANNNELS_SAME));
@@ -623,6 +630,25 @@ public:
     {
         auto context = reinterpret_cast<csl::CSLContext*>(context_);
 
+        CV_Assert(channelsModeInput == ELTWISE_CHANNNELS_INPUT_0 ||
+                  channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE ||
+                  channelsModeInput == ELTWISE_CHANNNELS_SAME);
+
+        if(channelsModeInput == ELTWISE_CHANNNELS_INPUT_0 || channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
+        {
+            auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
+            for (int i = 1; i < inputs.size(); i++)
+            {
+                auto from_wrapper = inputs[i].dynamicCast<CUDABackendWrapper>();
+                if (input_wrapper->getShape()[1] != from_wrapper->getShape()[1])
+                {
+                    CV_Assert(op == SUM);
+                    CV_Assert(coeffs.empty());
+                    return make_cuda_node<cuda4dnn::ShortcutOp>(preferableTarget, std::move(context->stream));
+                }
+            }
+        }
+
         auto op_ = [this] {
             switch (op) {
             case MAX: return cuda4dnn::EltwiseOpType::MAX;
diff --git a/modules/dnn/test/test_darknet_importer.cpp b/modules/dnn/test/test_darknet_importer.cpp
index a61e6420f1..7545b35b8e 100644
--- a/modules/dnn/test/test_darknet_importer.cpp
+++ b/modules/dnn/test/test_darknet_importer.cpp
@@ -528,8 +528,6 @@ INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, dnnBackendsAndTargets());
 
 TEST_P(Test_Darknet_layers, shortcut)
 {
-    if (backend == DNN_BACKEND_CUDA)
-        applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
     testDarknetLayer("shortcut");
     testDarknetLayer("shortcut_leaky");
     testDarknetLayer("shortcut_unequal");
diff --git a/modules/dnn/test/test_layers.cpp b/modules/dnn/test/test_layers.cpp
index 742357be9b..b64a9ca07a 100644
--- a/modules/dnn/test/test_layers.cpp
+++ b/modules/dnn/test/test_layers.cpp
@@ -1624,7 +1624,7 @@ TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0_truncate)
     int backendId = get<0>(get<1>(GetParam()));
     int targetId = get<1>(get<1>(GetParam()));
 
-    if (backendId == DNN_BACKEND_CUDA)
+    if (backendId == DNN_BACKEND_CUDA && weighted)
         applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
 
     Net net;
@@ -1690,15 +1690,15 @@ TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0)
     int backendId = get<0>(get<1>(GetParam()));
     int targetId = get<1>(get<1>(GetParam()));
 
-    if (backendId == DNN_BACKEND_CUDA)
-        applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
-
     Net net;
     LayerParams lp;
     lp.type = "Eltwise";
     lp.name = "testLayer";
     lp.set<std::string>("output_channels_mode", "input_0");
 
+    if (backendId == DNN_BACKEND_CUDA && weighted)
+        applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
+
     const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 2, 2, 2}, {1, 3, 2, 2}};
     const int out_channels = inpShapes[0][1];
     std::vector<String> inpNames(3);