|
|
|
@ -29,6 +29,8 @@ class BatchNormLayerImpl CV_FINAL : public BatchNormLayer |
|
|
|
|
public: |
|
|
|
|
Mat weights_, bias_; |
|
|
|
|
UMat umat_weight, umat_bias; |
|
|
|
|
mutable int dims; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BatchNormLayerImpl(const LayerParams& params) |
|
|
|
|
{ |
|
|
|
@ -142,6 +144,7 @@ public: |
|
|
|
|
std::vector<MatShape> &outputs, |
|
|
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
|
|
|
{ |
|
|
|
|
dims = inputs[0].size(); |
|
|
|
|
if (!useGlobalStats && inputs[0][0] != 1) |
|
|
|
|
CV_Error(Error::StsNotImplemented, "Batch normalization in training mode with batch size > 1"); |
|
|
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
|
|
|
@ -150,9 +153,9 @@ public: |
|
|
|
|
|
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
|
|
|
{ |
|
|
|
|
return backendId == DNN_BACKEND_OPENCV || |
|
|
|
|
return (backendId == DNN_BACKEND_OPENCV) || |
|
|
|
|
(backendId == DNN_BACKEND_HALIDE && haveHalide()) || |
|
|
|
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine()); |
|
|
|
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && (preferableTarget == DNN_TARGET_CPU || dims == 4)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
@ -178,11 +181,12 @@ public: |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
UMat &inpBlob = inputs[0]; |
|
|
|
|
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4); |
|
|
|
|
int groups = inpBlob.size[0]; |
|
|
|
|
int channels = inpBlob.size[1]; |
|
|
|
|
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1; |
|
|
|
|
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1; |
|
|
|
|
int planeSize = 1; |
|
|
|
|
for (size_t i = 2; i < inpBlob.dims; i++) { |
|
|
|
|
planeSize *= inpBlob.size[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
String opts = (use_half) ? " -DDtype=half" : " -DDtype=float"; |
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++) |
|
|
|
@ -196,7 +200,7 @@ public: |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
MatShape s = shape(groups * channels, rows * cols); |
|
|
|
|
MatShape s = shape(groups * channels, planeSize); |
|
|
|
|
UMat src = inputs[ii].reshape(1, s.size(), &s[0]); |
|
|
|
|
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]); |
|
|
|
|
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1); |
|
|
|
@ -248,9 +252,10 @@ public: |
|
|
|
|
CV_Assert(inputs.size() == 1); |
|
|
|
|
|
|
|
|
|
Mat &inpBlob = inputs[0]; |
|
|
|
|
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4); |
|
|
|
|
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1; |
|
|
|
|
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1; |
|
|
|
|
int planeSize = 1; |
|
|
|
|
for (size_t i = 2; i < inpBlob.dims; i++) { |
|
|
|
|
planeSize *= inpBlob.size[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++) |
|
|
|
|
{ |
|
|
|
@ -262,8 +267,8 @@ public: |
|
|
|
|
{ |
|
|
|
|
float w = weights_.at<float>(n); |
|
|
|
|
float b = bias_.at<float>(n); |
|
|
|
|
Mat inpBlobPlane(rows, cols, CV_32F, inpBlob.ptr<float>(num, n)); |
|
|
|
|
Mat outBlobPlane(rows, cols, CV_32F, outBlob.ptr<float>(num, n)); |
|
|
|
|
Mat inpBlobPlane(1, planeSize, CV_32F, inpBlob.ptr<float>(num, n)); |
|
|
|
|
Mat outBlobPlane(1, planeSize, CV_32F, outBlob.ptr<float>(num, n)); |
|
|
|
|
inpBlobPlane.convertTo(outBlobPlane, CV_32F, w, b); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|