more refactoring

pull/1453/head
Anatoly Baksheev 12 years ago
parent 512afe2a90
commit d6e2b657f9
  1. 23
      modules/viz/include/opencv2/viz.hpp
  2. 113
      modules/viz/include/opencv2/viz/events.hpp
  3. 105
      modules/viz/include/opencv2/viz/types.hpp
  4. 34
      modules/viz/include/opencv2/viz/viz3d.hpp
  5. 313
      modules/viz/src/cloud_widgets.cpp
  6. 13
      modules/viz/src/common.cpp
  7. 5
      modules/viz/src/interactor_style.cpp
  8. 38
      modules/viz/src/interactor_style.h
  9. 1
      modules/viz/src/precomp.hpp
  10. 314
      modules/viz/src/shape_widgets.cpp
  11. 39
      modules/viz/src/types.cpp
  12. 73
      modules/viz/src/viz3d.cpp
  13. 37
      modules/viz/src/viz3d_impl.cpp
  14. 38
      modules/viz/src/viz3d_impl.hpp

@ -60,7 +60,30 @@ namespace cv
//! takes coordiante frame data and builds transfrom to global coordinate frame
CV_EXPORTS Affine3f makeTransformToGlobal(const Vec3f& axis_x, const Vec3f& axis_y, const Vec3f& axis_z, const Vec3f& origin = Vec3f::all(0));
//! constructs camera pose from posiont, focal_point and up_vector (see gluLookAt() for more infromation
CV_EXPORTS Affine3f makeCameraPose(const Vec3f& position, const Vec3f& focal_point, const Vec3f& up_vector);
//! checks float value for Nan
inline bool isNan(float x)
{
unsigned int *u = reinterpret_cast<unsigned int *>(&x);
return ((u[0] & 0x7f800000) == 0x7f800000) && (u[0] & 0x007fffff);
}
//! checks double value for Nan
inline bool isNan(double x)
{
unsigned int *u = reinterpret_cast<unsigned int *>(&x);
return (u[1] & 0x7ff00000) == 0x7ff00000 && (u[0] != 0 || (u[1] & 0x000fffff) != 0);
}
//! checks vectors for Nans
template<typename _Tp, int cn> inline bool isNan(const Vec<_Tp, cn>& v)
{ return isNan(v.val[0]) || isNan(v.val[1]) || isNan(v.val[2]); }
//! checks point for Nans
template<typename _Tp> inline bool isNan(const Point3_<_Tp>& p)
{ return isNan(p.x) || isNan(p.y) || isNan(p.z); }
}
}

@ -1,113 +0,0 @@
#pragma once
#include <string>
#include <opencv2/viz/types.hpp>
namespace cv
{
namespace viz
{
class KeyboardEvent
{
public:
static const unsigned int Alt = 1;
static const unsigned int Ctrl = 2;
static const unsigned int Shift = 4;
/** \brief Constructor
* \param[in] action true for key was pressed, false for released
* \param[in] key_sym the key-name that caused the action
* \param[in] key the key code that caused the action
* \param[in] alt whether the alt key was pressed at the time where this event was triggered
* \param[in] ctrl whether the ctrl was pressed at the time where this event was triggered
* \param[in] shift whether the shift was pressed at the time where this event was triggered
*/
KeyboardEvent (bool action, const std::string& key_sym, unsigned char key, bool alt, bool ctrl, bool shift);
bool isAltPressed () const;
bool isCtrlPressed () const;
bool isShiftPressed () const;
unsigned char getKeyCode () const;
const String& getKeySym () const;
bool keyDown () const;
bool keyUp () const;
protected:
bool action_;
unsigned int modifiers_;
unsigned char key_code_;
String key_sym_;
};
class MouseEvent
{
public:
enum Type
{
MouseMove = 1,
MouseButtonPress,
MouseButtonRelease,
MouseScrollDown,
MouseScrollUp,
MouseDblClick
} ;
enum MouseButton
{
NoButton = 0,
LeftButton,
MiddleButton,
RightButton,
VScroll /*other buttons, scroll wheels etc. may follow*/
} ;
MouseEvent (const Type& type, const MouseButton& button, const Point& p, bool alt, bool ctrl, bool shift);
Type type;
MouseButton button;
Point pointer;
unsigned int key_state;
};
}
}
////////////////////////////////////////////////////////////////////
/// Implementation
inline cv::viz::KeyboardEvent::KeyboardEvent (bool _action, const std::string& _key_sym, unsigned char key, bool alt, bool ctrl, bool shift)
: action_ (_action), modifiers_ (0), key_code_(key), key_sym_ (_key_sym)
{
if (alt)
modifiers_ = Alt;
if (ctrl)
modifiers_ |= Ctrl;
if (shift)
modifiers_ |= Shift;
}
inline bool cv::viz::KeyboardEvent::isAltPressed () const { return (modifiers_ & Alt) != 0; }
inline bool cv::viz::KeyboardEvent::isCtrlPressed () const { return (modifiers_ & Ctrl) != 0; }
inline bool cv::viz::KeyboardEvent::isShiftPressed () const { return (modifiers_ & Shift) != 0; }
inline unsigned char cv::viz::KeyboardEvent::getKeyCode () const { return key_code_; }
inline const cv::String& cv::viz::KeyboardEvent::getKeySym () const { return key_sym_; }
inline bool cv::viz::KeyboardEvent::keyDown () const { return action_; }
inline bool cv::viz::KeyboardEvent::keyUp () const { return !action_; }
inline cv::viz::MouseEvent::MouseEvent (const Type& _type, const MouseButton& _button, const Point& _p, bool alt, bool ctrl, bool shift)
: type(_type), button(_button), pointer(_p), key_state(0)
{
if (alt)
key_state = KeyboardEvent::Alt;
if (ctrl)
key_state |= KeyboardEvent::Ctrl;
if (shift)
key_state |= KeyboardEvent::Shift;
}

@ -1,6 +1,6 @@
#pragma once
#include <vector>
#include <string>
#include <opencv2/core/cvdef.h>
#include <opencv2/core.hpp>
#include <opencv2/core/affine.hpp>
@ -8,35 +8,7 @@
namespace cv
{
typedef std::string String;
// //qt creator hack
// typedef cv::Scalar Scalar;
// typedef cv::Mat Mat;
// typedef std::string String;
// typedef cv::Vec3d Vec3d;
// typedef cv::Vec3f Vec3f;
// typedef cv::Vec4d Vec4d;
// typedef cv::Vec4f Vec4f;
// typedef cv::Vec2d Vec2d;
// typedef cv::Vec2i Vec2i;
// typedef cv::Vec3b Vec3b;
// typedef cv::Matx33d Matx33d;
// typedef cv::Affine3f Affine3f;
// typedef cv::Affine3d Affine3d;
// typedef cv::Point2i Point2i;
// typedef cv::Point3f Point3f;
// typedef cv::Point3d Point3d;
// typedef cv::Matx44d Matx44d;
// typedef cv::Matx44f Matx44f;
// typedef cv::Size Size;
// typedef cv::Point Point;
// typedef cv::InputArray InputArray;
// using cv::Point3_;
// using cv::Vec;
// using cv::Mat_;
// using cv::DataDepth;
// using cv::DataType;
// using cv::Ptr;
namespace viz
{
class CV_EXPORTS Color : public Scalar
@ -79,35 +51,58 @@ namespace cv
};
/////////////////////////////////////////////////////////////////////////////
/// Utility functions
class CV_EXPORTS KeyboardEvent
{
public:
static const unsigned int Alt = 1;
static const unsigned int Ctrl = 2;
static const unsigned int Shift = 4;
/** \brief Constructor
* \param[in] action true for key was pressed, false for released
* \param[in] key_sym the key-name that caused the action
* \param[in] key the key code that caused the action
* \param[in] alt whether the alt key was pressed at the time where this event was triggered
* \param[in] ctrl whether the ctrl was pressed at the time where this event was triggered
* \param[in] shift whether the shift was pressed at the time where this event was triggered
*/
KeyboardEvent (bool action, const std::string& key_sym, unsigned char key, bool alt, bool ctrl, bool shift);
bool isAltPressed () const;
bool isCtrlPressed () const;
bool isShiftPressed () const;
unsigned char getKeyCode () const;
const String& getKeySym () const;
bool keyDown () const;
bool keyUp () const;
protected:
bool action_;
unsigned int modifiers_;
unsigned char key_code_;
String key_sym_;
};
inline Color vtkcolor(const Color& color)
class CV_EXPORTS MouseEvent
{
Color scaled_color = color * (1.0/255.0);
std::swap(scaled_color[0], scaled_color[2]);
return scaled_color;
}
public:
enum Type { MouseMove = 1, MouseButtonPress, MouseButtonRelease, MouseScrollDown, MouseScrollUp, MouseDblClick } ;
enum MouseButton { NoButton = 0, LeftButton, MiddleButton, RightButton, VScroll } ;
inline Vec3d vtkpoint(const Point3f& point) { return Vec3d(point.x, point.y, point.z); }
template<typename _Tp> inline _Tp normalized(const _Tp& v) { return v * 1/cv::norm(v); }
MouseEvent (const Type& type, const MouseButton& button, const Point& p, bool alt, bool ctrl, bool shift);
Type type;
MouseButton button;
Point pointer;
unsigned int key_state;
};
} /* namespace viz */
} /* namespace cv */
inline bool isNan(float x)
{
unsigned int *u = reinterpret_cast<unsigned int *>(&x);
return ((u[0] & 0x7f800000) == 0x7f800000) && (u[0] & 0x007fffff);
}
inline bool isNan(double x)
{
unsigned int *u = reinterpret_cast<unsigned int *>(&x);
return (u[1] & 0x7ff00000) == 0x7ff00000 && (u[0] != 0 || (u[1] & 0x000fffff) != 0);
}
template<typename _Tp, int cn> inline bool isNan(const Vec<_Tp, cn>& v)
{ return isNan(v.val[0]) || isNan(v.val[1]) || isNan(v.val[2]); }
template<typename _Tp> inline bool isNan(const Point3_<_Tp>& p)
{ return isNan(p.x) || isNan(p.y) || isNan(p.z); }
}
}

@ -4,14 +4,9 @@
//#error "Viz is in beta state now. Please define macro above to use it"
#endif
#include <opencv2/core/cvdef.h>
#include <opencv2/core.hpp>
#include <string>
#include <opencv2/viz/types.hpp>
#include <opencv2/viz/widgets.hpp>
#include <opencv2/viz/events.hpp>
namespace cv
{
@ -20,28 +15,21 @@ namespace cv
class CV_EXPORTS Viz3d
{
public:
typedef cv::Ptr<Viz3d> Ptr;
typedef void (*KeyboardCallback)(const KeyboardEvent&, void*);
typedef void (*MouseCallback)(const MouseEvent&, void*);
Viz3d(const String& window_name = String());
~Viz3d();
void setBackgroundColor(const Color& color = Color::black());
bool addPolygonMesh (const Mesh3d& mesh, const String& id = "polygon");
bool updatePolygonMesh (const Mesh3d& mesh, const String& id = "polygon");
//to refactor
bool addPolygonMesh(const Mesh3d& mesh, const String& id = "polygon");
bool updatePolygonMesh(const Mesh3d& mesh, const String& id = "polygon");
bool addPolylineFromPolygonMesh (const Mesh3d& mesh, const String& id = "polyline");
bool addPolygon(const Mat& cloud, const Color& color, const String& id = "polygon");
void spin ();
void spinOnce (int time = 1, bool force_redraw = false);
void registerKeyboardCallback(void (*callback)(const KeyboardEvent&, void*), void* cookie = 0);
void registerMouseCallback(void (*callback)(const MouseEvent&, void*), void* cookie = 0);
bool wasStopped() const;
void showWidget(const String &id, const Widget &widget, const Affine3f &pose = Affine3f::Identity());
void removeWidget(const String &id);
@ -50,6 +38,13 @@ namespace cv
void setWidgetPose(const String &id, const Affine3f &pose);
void updateWidgetPose(const String &id, const Affine3f &pose);
Affine3f getWidgetPose(const String &id) const;
void spin();
void spinOnce(int time = 1, bool force_redraw = false);
bool wasStopped() const;
void registerKeyboardCallback(KeyboardCallback callback, void* cookie = 0);
void registerMouseCallback(MouseCallback callback, void* cookie = 0);
private:
Viz3d(const Viz3d&);
Viz3d& operator=(const Viz3d&);
@ -57,8 +52,9 @@ namespace cv
struct VizImpl;
VizImpl* impl_;
};
}
}
} /* namespace viz */
} /* namespace cv */

@ -0,0 +1,313 @@
#include "precomp.hpp"
///////////////////////////////////////////////////////////////////////////////////////////////
/// Point Cloud Widget implementation
struct cv::viz::CloudWidget::CreateCloudWidget
{
static inline vtkSmartPointer<vtkPolyData> create(const Mat &cloud, vtkIdType &nr_points)
{
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New ();
vtkSmartPointer<vtkCellArray> vertices = vtkSmartPointer<vtkCellArray>::New ();
polydata->SetVerts (vertices);
vtkSmartPointer<vtkPoints> points = polydata->GetPoints();
vtkSmartPointer<vtkIdTypeArray> initcells;
nr_points = cloud.total();
if (!points)
{
points = vtkSmartPointer<vtkPoints>::New ();
if (cloud.depth() == CV_32F)
points->SetDataTypeToFloat();
else if (cloud.depth() == CV_64F)
points->SetDataTypeToDouble();
polydata->SetPoints (points);
}
points->SetNumberOfPoints (nr_points);
if (cloud.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
else if (cloud.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
points->SetNumberOfPoints (nr_points);
// Update cells
vtkSmartPointer<vtkIdTypeArray> cells = vertices->GetData ();
// If no init cells and cells has not been initialized...
if (!cells)
cells = vtkSmartPointer<vtkIdTypeArray>::New ();
// If we have less values then we need to recreate the array
if (cells->GetNumberOfTuples () < nr_points)
{
cells = vtkSmartPointer<vtkIdTypeArray>::New ();
// If init cells is given, and there's enough data in it, use it
if (initcells && initcells->GetNumberOfTuples () >= nr_points)
{
cells->DeepCopy (initcells);
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
}
else
{
// If the number of tuples is still too small, we need to recreate the array
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
vtkIdType *cell = cells->GetPointer (0);
// Fill it with 1s
std::fill_n (cell, nr_points * 2, 1);
cell++;
for (vtkIdType i = 0; i < nr_points; ++i, cell += 2)
*cell = i;
// Save the results in initcells
initcells = vtkSmartPointer<vtkIdTypeArray>::New ();
initcells->DeepCopy (cells);
}
}
else
{
// The assumption here is that the current set of cells has more data than needed
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
}
// Set the cells and the vertices
vertices->SetCells (nr_points, cells);
return polydata;
}
};
cv::viz::CloudWidget::CloudWidget(InputArray _cloud, InputArray _colors)
{
Mat cloud = _cloud.getMat();
Mat colors = _colors.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
CV_Assert(colors.type() == CV_8UC3 && cloud.size() == colors.size());
if (cloud.isContinuous() && colors.isContinuous())
{
cloud.reshape(cloud.channels(), 1);
colors.reshape(colors.channels(), 1);
}
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
// Filter colors
Vec3b* colors_data = new Vec3b[nr_points];
NanFilter::copy(colors, colors_data, cloud);
vtkSmartPointer<vtkUnsignedCharArray> scalars = vtkSmartPointer<vtkUnsignedCharArray>::New ();
scalars->SetNumberOfComponents (3);
scalars->SetNumberOfTuples (nr_points);
scalars->SetArray (colors_data->val, 3 * nr_points, 0);
// Assign the colors
polydata->GetPointData ()->SetScalars (scalars);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput (polydata);
Vec3d minmax(scalars->GetRange());
mapper->SetScalarRange(minmax.val);
mapper->SetScalarModeToUsePointData ();
bool interpolation = (polydata && polydata->GetNumberOfCells () != polydata->GetNumberOfVerts ());
mapper->SetInterpolateScalarsBeforeMapping (interpolation);
mapper->ScalarVisibilityOn ();
mapper->ImmediateModeRenderingOff ();
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetNumberOfCloudPoints (int (std::max<vtkIdType> (1, polydata->GetNumberOfPoints () / 10)));
actor->GetProperty ()->SetInterpolationToFlat ();
actor->GetProperty ()->BackfaceCullingOn ();
actor->SetMapper (mapper);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::CloudWidget::CloudWidget(InputArray _cloud, const Color &color)
{
Mat cloud = _cloud.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput (polydata);
bool interpolation = (polydata && polydata->GetNumberOfCells () != polydata->GetNumberOfVerts ());
mapper->SetInterpolateScalarsBeforeMapping (interpolation);
mapper->ScalarVisibilityOff ();
mapper->ImmediateModeRenderingOff ();
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetNumberOfCloudPoints (int (std::max<vtkIdType> (1, polydata->GetNumberOfPoints () / 10)));
actor->GetProperty ()->SetInterpolationToFlat ();
actor->GetProperty ()->BackfaceCullingOn ();
actor->SetMapper (mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::CloudWidget cv::viz::Widget::cast<cv::viz::CloudWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<CloudWidget&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// Cloud Normals Widget implementation
struct cv::viz::CloudNormalsWidget::ApplyCloudNormals
{
template<typename _Tp>
struct Impl
{
static vtkSmartPointer<vtkCellArray> applyOrganized(const Mat &cloud, const Mat& normals, double level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
vtkIdType point_step = static_cast<vtkIdType>(std::sqrt(level));
nr_normals = (static_cast<vtkIdType> ((cloud.cols - 1) / point_step) + 1) *
(static_cast<vtkIdType> ((cloud.rows - 1) / point_step) + 1);
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
vtkIdType cell_count = 0;
for (vtkIdType y = 0; y < cloud.rows; y += point_step)
{
const _Tp *prow = cloud.ptr<_Tp>(y);
const _Tp *nrow = normals.ptr<_Tp>(y);
for (vtkIdType x = 0; x < cloud.cols; x += point_step * cch)
{
pts[2 * cell_count * 3 + 0] = prow[x];
pts[2 * cell_count * 3 + 1] = prow[x+1];
pts[2 * cell_count * 3 + 2] = prow[x+2];
pts[2 * cell_count * 3 + 3] = prow[x] + nrow[x] * scale;
pts[2 * cell_count * 3 + 4] = prow[x+1] + nrow[x+1] * scale;
pts[2 * cell_count * 3 + 5] = prow[x+2] + nrow[x+2] * scale;
lines->InsertNextCell (2);
lines->InsertCellPoint (2 * cell_count);
lines->InsertCellPoint (2 * cell_count + 1);
cell_count++;
}
}
return lines;
}
static vtkSmartPointer<vtkCellArray> applyUnorganized(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
nr_normals = (cloud.size().area() - 1) / level + 1 ;
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
const _Tp *p = cloud.ptr<_Tp>();
const _Tp *n = normals.ptr<_Tp>();
for (vtkIdType i = 0, j = 0; j < nr_normals; j++, i = j * level * cch)
{
pts[2 * j * 3 + 0] = p[i];
pts[2 * j * 3 + 1] = p[i+1];
pts[2 * j * 3 + 2] = p[i+2];
pts[2 * j * 3 + 3] = p[i] + n[i] * scale;
pts[2 * j * 3 + 4] = p[i+1] + n[i+1] * scale;
pts[2 * j * 3 + 5] = p[i+2] + n[i+2] * scale;
lines->InsertNextCell (2);
lines->InsertCellPoint (2 * j);
lines->InsertCellPoint (2 * j + 1);
}
return lines;
}
};
template<typename _Tp>
static inline vtkSmartPointer<vtkCellArray> apply(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
if (cloud.cols > 1 && cloud.rows > 1)
return ApplyCloudNormals::Impl<_Tp>::applyOrganized(cloud, normals, level, scale, pts, nr_normals);
else
return ApplyCloudNormals::Impl<_Tp>::applyUnorganized(cloud, normals, level, scale, pts, nr_normals);
}
};
cv::viz::CloudNormalsWidget::CloudNormalsWidget(InputArray _cloud, InputArray _normals, int level, float scale, const Color &color)
{
Mat cloud = _cloud.getMat();
Mat normals = _normals.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
CV_Assert(cloud.size() == normals.size() && cloud.type() == normals.type());
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
vtkIdType nr_normals = 0;
if (cloud.depth() == CV_32F)
{
points->SetDataTypeToFloat();
vtkSmartPointer<vtkFloatArray> data = vtkSmartPointer<vtkFloatArray>::New ();
data->SetNumberOfComponents (3);
float* pts = 0;
lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
data->SetArray (&pts[0], 2 * nr_normals * 3, 0);
points->SetData (data);
}
else
{
points->SetDataTypeToDouble();
vtkSmartPointer<vtkDoubleArray> data = vtkSmartPointer<vtkDoubleArray>::New ();
data->SetNumberOfComponents (3);
double* pts = 0;
lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
data->SetArray (&pts[0], 2 * nr_normals * 3, 0);
points->SetData (data);
}
vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New();
polyData->SetPoints (points);
polyData->SetLines (lines);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput (polyData);
mapper->SetColorModeToMapScalars();
mapper->SetScalarModeToUsePointData();
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::CloudNormalsWidget cv::viz::Widget::cast<cv::viz::CloudNormalsWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<CloudNormalsWidget&>(widget);
}

@ -1,20 +1,9 @@
#include <common.h>
#include <cstdlib>
#include <opencv2/viz/types.hpp>
#include "viz3d_impl.hpp"
/////////////////////////////////////////////////////////////////////////////////////////////
//Eigen::Matrix4d cv::viz::vtkToEigen (vtkMatrix4x4* vtk_matrix)
//{
// Eigen::Matrix4d eigen_matrix = Eigen::Matrix4d::Identity ();
// for (int i=0; i < 4; i++)
// for (int j=0; j < 4; j++)
// eigen_matrix (i, j) = vtk_matrix->GetElement (i, j);
// return eigen_matrix;
//}
///////////////////////////////////////////////////////////////////////////////////////////////
//Eigen::Vector2i cv::viz::worldToView (const Eigen::Vector4d &world_pt, const Eigen::Matrix4d &view_projection_matrix, int width, int height)
//{

@ -222,7 +222,6 @@ cv::viz::InteractorStyle::OnKeyDown ()
" ALT + s, S : turn stereo mode on/off\n"
" ALT + f, F : switch between maximized window mode and original size\n"
"\n"
" SHIFT + left click : select a point\n"
<< std::endl;
break;
}
@ -676,9 +675,6 @@ void cv::viz::InteractorStyle::OnTimer ()
}
namespace cv
{
namespace viz
@ -687,4 +683,3 @@ namespace cv
vtkStandardNewMacro(InteractorStyle)
}
}

@ -1,15 +1,14 @@
#pragma once
#include "viz_types.h"
#include <opencv2/viz/events.hpp>
#include <opencv2/viz/types.hpp>
namespace cv
{
namespace viz
{
/** \brief PCLVisualizerInteractorStyle defines an unique, custom VTK
* based interactory style for PCL Visualizer applications. Besides
* defining the rendering style, we also create a list of custom actions
/** \brief InteractorStyle defines an unique, custom VTK based interactory style Viz applications.
* Besides defining the rendering style, we also create a list of custom actions
* that are triggered on different keys being pressed:
*
* - p, P : switch to a point-based representation
@ -28,7 +27,6 @@ namespace cv
* - SHIFT + left click : select a point
*
* \author Radu B. Rusu
* \ingroup visualization
*/
class InteractorStyle : public vtkInteractorStyleTrackballCamera
{
@ -43,41 +41,19 @@ namespace cv
static InteractorStyle *New ();
InteractorStyle () {}
virtual ~InteractorStyle () {}
// this macro defines Superclass, the isA functionality and the safe downcast method
vtkTypeMacro (InteractorStyle, vtkInteractorStyleTrackballCamera);
vtkTypeMacro (InteractorStyle, vtkInteractorStyleTrackballCamera)
/** \brief Initialization routine. Must be called before anything else. */
virtual void Initialize ();
/** \brief Pass a pointer to the actor map
* \param[in] actors the actor map that will be used with this style
*/
inline void setCloudActorMap (const Ptr<CloudActorMap>& actors) { actors_ = actors; }
/** \brief Pass a set of renderers to the interactor style.
* \param[in] rens the vtkRendererCollection to use
*/
void setRenderer (vtkSmartPointer<vtkRenderer>& ren) { renderer_ = ren; }
/** \brief Register a callback function for mouse events
* \param[in] ccallback function that will be registered as a callback for a mouse event
* \param[in] cookie for passing user data to callback
*/
void registerMouseCallback(void (*callback)(const MouseEvent&, void*), void* cookie = 0);
/** \brief Register a callback function for keyboard events
* \param[in] callback a function that will be registered as a callback for a keyboard event
* \param[in] cookie user data passed to the callback function
*/
void registerKeyboardCallback(void (*callback)(const KeyboardEvent&, void*), void * cookie = 0);
/** \brief Save the current rendered image to disk, as a PNG screenshot.
* \param[in] file the name of the PNG file
*/
void saveScreenshot (const std::string &file);
/** \brief Change the default keyboard modified from ALT to a different special key.
@ -134,24 +110,18 @@ namespace cv
/** \brief Interactor style internal method. Gets called periodically if a timer is set. */
virtual void OnTimer ();
void zoomIn ();
void zoomOut ();
/** \brief True if we're using red-blue colors for anaglyphic stereo, false if magenta-green. */
bool stereo_anaglyph_mask_default_;
/** \brief The keyboard modifier to use. Default: Alt. */
KeyboardModifier modifier_;
/** \brief KeyboardEvent callback function pointer*/
void (*keyboardCallback_)(const KeyboardEvent&, void*);
/** \brief KeyboardEvent callback user data*/
void *keyboard_callback_cookie_;
/** \brief MouseEvent callback function pointer */
void (*mouseCallback_)(const MouseEvent&, void*);
/** \brief MouseEvent callback user data */
void *mouse_callback_cookie_;
};
}

@ -156,7 +156,6 @@
#include <opencv2/core.hpp>
#include <opencv2/viz.hpp>
#include "opencv2/viz/widget_accessor.hpp"
#include <opencv2/calib3d.hpp>
namespace cv
{

@ -423,6 +423,7 @@ cv::viz::GridWidget::GridWidget(Vec2i dimensions, Vec2d spacing, const Color &co
// Show it as wireframe
actor->GetProperty ()->SetRepresentationToWireframe ();
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::GridWidget cv::viz::Widget::cast<cv::viz::GridWidget>()
@ -524,316 +525,3 @@ cv::String cv::viz::TextWidget::getText() const
CV_Assert(actor);
return actor->GetInput();
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// point cloud widget implementation
struct cv::viz::CloudWidget::CreateCloudWidget
{
static inline vtkSmartPointer<vtkPolyData> create(const Mat &cloud, vtkIdType &nr_points)
{
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New ();
vtkSmartPointer<vtkCellArray> vertices = vtkSmartPointer<vtkCellArray>::New ();
polydata->SetVerts (vertices);
vtkSmartPointer<vtkPoints> points = polydata->GetPoints();
vtkSmartPointer<vtkIdTypeArray> initcells;
nr_points = cloud.total();
if (!points)
{
points = vtkSmartPointer<vtkPoints>::New ();
if (cloud.depth() == CV_32F)
points->SetDataTypeToFloat();
else if (cloud.depth() == CV_64F)
points->SetDataTypeToDouble();
polydata->SetPoints (points);
}
points->SetNumberOfPoints (nr_points);
if (cloud.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
else if (cloud.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud);
nr_points = data_end - data_beg;
}
points->SetNumberOfPoints (nr_points);
// Update cells
vtkSmartPointer<vtkIdTypeArray> cells = vertices->GetData ();
// If no init cells and cells has not been initialized...
if (!cells)
cells = vtkSmartPointer<vtkIdTypeArray>::New ();
// If we have less values then we need to recreate the array
if (cells->GetNumberOfTuples () < nr_points)
{
cells = vtkSmartPointer<vtkIdTypeArray>::New ();
// If init cells is given, and there's enough data in it, use it
if (initcells && initcells->GetNumberOfTuples () >= nr_points)
{
cells->DeepCopy (initcells);
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
}
else
{
// If the number of tuples is still too small, we need to recreate the array
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
vtkIdType *cell = cells->GetPointer (0);
// Fill it with 1s
std::fill_n (cell, nr_points * 2, 1);
cell++;
for (vtkIdType i = 0; i < nr_points; ++i, cell += 2)
*cell = i;
// Save the results in initcells
initcells = vtkSmartPointer<vtkIdTypeArray>::New ();
initcells->DeepCopy (cells);
}
}
else
{
// The assumption here is that the current set of cells has more data than needed
cells->SetNumberOfComponents (2);
cells->SetNumberOfTuples (nr_points);
}
// Set the cells and the vertices
vertices->SetCells (nr_points, cells);
return polydata;
}
};
cv::viz::CloudWidget::CloudWidget(InputArray _cloud, InputArray _colors)
{
Mat cloud = _cloud.getMat();
Mat colors = _colors.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
CV_Assert(colors.type() == CV_8UC3 && cloud.size() == colors.size());
if (cloud.isContinuous() && colors.isContinuous())
{
cloud.reshape(cloud.channels(), 1);
colors.reshape(colors.channels(), 1);
}
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
// Filter colors
Vec3b* colors_data = new Vec3b[nr_points];
NanFilter::copy(colors, colors_data, cloud);
vtkSmartPointer<vtkUnsignedCharArray> scalars = vtkSmartPointer<vtkUnsignedCharArray>::New ();
scalars->SetNumberOfComponents (3);
scalars->SetNumberOfTuples (nr_points);
scalars->SetArray (colors_data->val, 3 * nr_points, 0);
// Assign the colors
polydata->GetPointData ()->SetScalars (scalars);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput (polydata);
Vec3d minmax(scalars->GetRange());
mapper->SetScalarRange(minmax.val);
mapper->SetScalarModeToUsePointData ();
bool interpolation = (polydata && polydata->GetNumberOfCells () != polydata->GetNumberOfVerts ());
mapper->SetInterpolateScalarsBeforeMapping (interpolation);
mapper->ScalarVisibilityOn ();
mapper->ImmediateModeRenderingOff ();
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetNumberOfCloudPoints (int (std::max<vtkIdType> (1, polydata->GetNumberOfPoints () / 10)));
actor->GetProperty ()->SetInterpolationToFlat ();
actor->GetProperty ()->BackfaceCullingOn ();
actor->SetMapper (mapper);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::CloudWidget::CloudWidget(InputArray _cloud, const Color &color)
{
Mat cloud = _cloud.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
vtkIdType nr_points;
vtkSmartPointer<vtkPolyData> polydata = CreateCloudWidget::create(cloud, nr_points);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput (polydata);
bool interpolation = (polydata && polydata->GetNumberOfCells () != polydata->GetNumberOfVerts ());
mapper->SetInterpolateScalarsBeforeMapping (interpolation);
mapper->ScalarVisibilityOff ();
mapper->ImmediateModeRenderingOff ();
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetNumberOfCloudPoints (int (std::max<vtkIdType> (1, polydata->GetNumberOfPoints () / 10)));
actor->GetProperty ()->SetInterpolationToFlat ();
actor->GetProperty ()->BackfaceCullingOn ();
actor->SetMapper (mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::CloudWidget cv::viz::Widget::cast<cv::viz::CloudWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<CloudWidget&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// cloud normals widget implementation
struct cv::viz::CloudNormalsWidget::ApplyCloudNormals
{
template<typename _Tp>
struct Impl
{
static vtkSmartPointer<vtkCellArray> applyOrganized(const Mat &cloud, const Mat& normals, double level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
vtkIdType point_step = static_cast<vtkIdType>(std::sqrt(level));
nr_normals = (static_cast<vtkIdType> ((cloud.cols - 1) / point_step) + 1) *
(static_cast<vtkIdType> ((cloud.rows - 1) / point_step) + 1);
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
vtkIdType cell_count = 0;
for (vtkIdType y = 0; y < cloud.rows; y += point_step)
{
const _Tp *prow = cloud.ptr<_Tp>(y);
const _Tp *nrow = normals.ptr<_Tp>(y);
for (vtkIdType x = 0; x < cloud.cols; x += point_step * cch)
{
pts[2 * cell_count * 3 + 0] = prow[x];
pts[2 * cell_count * 3 + 1] = prow[x+1];
pts[2 * cell_count * 3 + 2] = prow[x+2];
pts[2 * cell_count * 3 + 3] = prow[x] + nrow[x] * scale;
pts[2 * cell_count * 3 + 4] = prow[x+1] + nrow[x+1] * scale;
pts[2 * cell_count * 3 + 5] = prow[x+2] + nrow[x+2] * scale;
lines->InsertNextCell (2);
lines->InsertCellPoint (2 * cell_count);
lines->InsertCellPoint (2 * cell_count + 1);
cell_count++;
}
}
return lines;
}
static vtkSmartPointer<vtkCellArray> applyUnorganized(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
nr_normals = (cloud.size().area() - 1) / level + 1 ;
pts = new _Tp[2 * nr_normals * 3];
int cch = cloud.channels();
const _Tp *p = cloud.ptr<_Tp>();
const _Tp *n = normals.ptr<_Tp>();
for (vtkIdType i = 0, j = 0; j < nr_normals; j++, i = j * level * cch)
{
pts[2 * j * 3 + 0] = p[i];
pts[2 * j * 3 + 1] = p[i+1];
pts[2 * j * 3 + 2] = p[i+2];
pts[2 * j * 3 + 3] = p[i] + n[i] * scale;
pts[2 * j * 3 + 4] = p[i+1] + n[i+1] * scale;
pts[2 * j * 3 + 5] = p[i+2] + n[i+2] * scale;
lines->InsertNextCell (2);
lines->InsertCellPoint (2 * j);
lines->InsertCellPoint (2 * j + 1);
}
return lines;
}
};
template<typename _Tp>
static inline vtkSmartPointer<vtkCellArray> apply(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals)
{
if (cloud.cols > 1 && cloud.rows > 1)
return ApplyCloudNormals::Impl<_Tp>::applyOrganized(cloud, normals, level, scale, pts, nr_normals);
else
return ApplyCloudNormals::Impl<_Tp>::applyUnorganized(cloud, normals, level, scale, pts, nr_normals);
}
};
cv::viz::CloudNormalsWidget::CloudNormalsWidget(InputArray _cloud, InputArray _normals, int level, float scale, const Color &color)
{
Mat cloud = _cloud.getMat();
Mat normals = _normals.getMat();
CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4);
CV_Assert(cloud.size() == normals.size() && cloud.type() == normals.type());
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New();
vtkIdType nr_normals = 0;
if (cloud.depth() == CV_32F)
{
points->SetDataTypeToFloat();
vtkSmartPointer<vtkFloatArray> data = vtkSmartPointer<vtkFloatArray>::New ();
data->SetNumberOfComponents (3);
float* pts = 0;
lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
data->SetArray (&pts[0], 2 * nr_normals * 3, 0);
points->SetData (data);
}
else
{
points->SetDataTypeToDouble();
vtkSmartPointer<vtkDoubleArray> data = vtkSmartPointer<vtkDoubleArray>::New ();
data->SetNumberOfComponents (3);
double* pts = 0;
lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals);
data->SetArray (&pts[0], 2 * nr_normals * 3, 0);
points->SetData (data);
}
vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New();
polyData->SetPoints (points);
polyData->SetLines (lines);
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInput (polyData);
mapper->SetColorModeToMapScalars();
mapper->SetScalarModeToUsePointData();
vtkSmartPointer<vtkLODActor> actor = vtkSmartPointer<vtkLODActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::CloudNormalsWidget cv::viz::Widget::cast<cv::viz::CloudNormalsWidget>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<CloudNormalsWidget&>(widget);
}

@ -20,3 +20,42 @@ cv::viz::Color cv::viz::Color::white() { return Color(255, 255, 255); }
cv::viz::Color cv::viz::Color::gray() { return Color(128, 128, 128); }
////////////////////////////////////////////////////////////////////
/// cv::viz::KeyboardEvent
cv::viz::KeyboardEvent::KeyboardEvent (bool _action, const std::string& _key_sym, unsigned char key, bool alt, bool ctrl, bool shift)
: action_ (_action), modifiers_ (0), key_code_(key), key_sym_ (_key_sym)
{
if (alt)
modifiers_ = Alt;
if (ctrl)
modifiers_ |= Ctrl;
if (shift)
modifiers_ |= Shift;
}
bool cv::viz::KeyboardEvent::isAltPressed () const { return (modifiers_ & Alt) != 0; }
bool cv::viz::KeyboardEvent::isCtrlPressed () const { return (modifiers_ & Ctrl) != 0; }
bool cv::viz::KeyboardEvent::isShiftPressed () const { return (modifiers_ & Shift) != 0; }
unsigned char cv::viz::KeyboardEvent::getKeyCode () const { return key_code_; }
const cv::String& cv::viz::KeyboardEvent::getKeySym () const { return key_sym_; }
bool cv::viz::KeyboardEvent::keyDown () const { return action_; }
bool cv::viz::KeyboardEvent::keyUp () const { return !action_; }
////////////////////////////////////////////////////////////////////
/// cv::viz::MouseEvent
cv::viz::MouseEvent::MouseEvent (const Type& _type, const MouseButton& _button, const Point& _p, bool alt, bool ctrl, bool shift)
: type(_type), button(_button), pointer(_p), key_state(0)
{
if (alt)
key_state = KeyboardEvent::Alt;
if (ctrl)
key_state |= KeyboardEvent::Ctrl;
if (shift)
key_state |= KeyboardEvent::Shift;
}

@ -2,20 +2,10 @@
#include "viz3d_impl.hpp"
cv::viz::Viz3d::Viz3d(const String& window_name) : impl_(new VizImpl(window_name))
{
}
cv::viz::Viz3d::Viz3d(const String& window_name) : impl_(new VizImpl(window_name)) {}
cv::viz::Viz3d::~Viz3d() { delete impl_; }
cv::viz::Viz3d::~Viz3d()
{
delete impl_;
}
void cv::viz::Viz3d::setBackgroundColor(const Color& color)
{
impl_->setBackgroundColor(color);
}
void cv::viz::Viz3d::setBackgroundColor(const Color& color) { impl_->setBackgroundColor(color); }
bool cv::viz::Viz3d::addPolygonMesh (const Mesh3d& mesh, const String& id)
{
@ -37,54 +27,21 @@ bool cv::viz::Viz3d::addPolygon(const Mat& cloud, const Color& color, const Stri
return impl_->addPolygon(cloud, color, id);
}
void cv::viz::Viz3d::spin()
{
impl_->spin();
}
void cv::viz::Viz3d::spinOnce (int time, bool force_redraw)
{
impl_->spinOnce(time, force_redraw);
}
void cv::viz::Viz3d::registerKeyboardCallback(void (*callback)(const KeyboardEvent&, void*), void* cookie)
{
impl_->registerKeyboardCallback(callback, cookie);
}
void cv::viz::Viz3d::registerMouseCallback(void (*callback)(const MouseEvent&, void*), void* cookie)
{
impl_->registerMouseCallback(callback, cookie);
}
void cv::viz::Viz3d::spin() { impl_->spin(); }
void cv::viz::Viz3d::spinOnce (int time, bool force_redraw) { impl_->spinOnce(time, force_redraw); }
bool cv::viz::Viz3d::wasStopped() const { return impl_->wasStopped(); }
void cv::viz::Viz3d::showWidget(const String &id, const Widget &widget, const Affine3f &pose)
{
impl_->showWidget(id, widget, pose);
}
void cv::viz::Viz3d::removeWidget(const String &id)
{
impl_->removeWidget(id);
}
void cv::viz::Viz3d::registerKeyboardCallback(KeyboardCallback callback, void* cookie)
{ impl_->registerKeyboardCallback(callback, cookie); }
cv::viz::Widget cv::viz::Viz3d::getWidget(const String &id) const
{
return impl_->getWidget(id);
}
void cv::viz::Viz3d::registerMouseCallback(MouseCallback callback, void* cookie)
{ impl_->registerMouseCallback(callback, cookie); }
void cv::viz::Viz3d::setWidgetPose(const String &id, const Affine3f &pose)
{
impl_->setWidgetPose(id, pose);
}
void cv::viz::Viz3d::updateWidgetPose(const String &id, const Affine3f &pose)
{
impl_->updateWidgetPose(id, pose);
}
cv::Affine3f cv::viz::Viz3d::getWidgetPose(const String &id) const
{
return impl_->getWidgetPose(id);
}
void cv::viz::Viz3d::showWidget(const String &id, const Widget &widget, const Affine3f &pose) { impl_->showWidget(id, widget, pose); }
void cv::viz::Viz3d::removeWidget(const String &id) { impl_->removeWidget(id); }
cv::viz::Widget cv::viz::Viz3d::getWidget(const String &id) const { return impl_->getWidget(id); }
void cv::viz::Viz3d::setWidgetPose(const String &id, const Affine3f &pose) { impl_->setWidgetPose(id, pose); }
void cv::viz::Viz3d::updateWidgetPose(const String &id, const Affine3f &pose) { impl_->updateWidgetPose(id, pose); }
cv::Affine3f cv::viz::Viz3d::getWidgetPose(const String &id) const { return impl_->getWidgetPose(id); }

@ -1,6 +1,4 @@
#include "precomp.hpp"
#include <opencv2/calib3d.hpp>
#include "viz3d_impl.hpp"
#include <vtkRenderWindowInteractor.h>
@ -95,16 +93,11 @@ cv::viz::Viz3d::VizImpl::~VizImpl ()
void cv::viz::Viz3d::VizImpl::saveScreenshot (const std::string &file) { style_->saveScreenshot (file); }
/////////////////////////////////////////////////////////////////////////////////////////////
void cv::viz::Viz3d::VizImpl::registerMouseCallback(void (*callback)(const MouseEvent&, void*), void* cookie)
{
style_->registerMouseCallback(callback, cookie);
}
void cv::viz::Viz3d::VizImpl::registerMouseCallback(MouseCallback callback, void* cookie)
{ style_->registerMouseCallback(callback, cookie); }
/////////////////////////////////////////////////////////////////////////////////////////////
void cv::viz::Viz3d::VizImpl::registerKeyboardCallback(void (*callback)(const KeyboardEvent&, void*), void* cookie)
{
style_->registerKeyboardCallback(callback, cookie);
}
void cv::viz::Viz3d::VizImpl::registerKeyboardCallback(KeyboardCallback callback, void* cookie)
{ style_->registerKeyboardCallback(callback, cookie); }
/////////////////////////////////////////////////////////////////////////////////////////////
void cv::viz::Viz3d::VizImpl::spin ()
@ -1018,13 +1011,6 @@ void cv::viz::convertToVtkMatrix (const Eigen::Vector4f &origin, const Eigen::Qu
vtk_matrix->SetElement (3, 3, 1.0f);
}
void cv::viz::convertToVtkMatrix (const Matx44f &m, vtkSmartPointer<vtkMatrix4x4> &vtk_matrix)
{
for (int i = 0; i < 4; i++)
for (int k = 0; k < 4; k++)
vtk_matrix->SetElement (i, k, m (i, k));
}
vtkSmartPointer<vtkMatrix4x4> cv::viz::convertToVtkMatrix (const cv::Matx44f &m)
{
vtkSmartPointer<vtkMatrix4x4> vtk_matrix = vtkSmartPointer<vtkMatrix4x4>::New();
@ -1034,14 +1020,6 @@ vtkSmartPointer<vtkMatrix4x4> cv::viz::convertToVtkMatrix (const cv::Matx44f &m)
return vtk_matrix;
}
void cv::viz::convertToCvMatrix (const vtkSmartPointer<vtkMatrix4x4> &vtk_matrix, cv::Matx44f &m)
{
for (int i = 0; i < 4; i++)
for (int k = 0; k < 4; k++)
m(i,k) = vtk_matrix->GetElement (i, k);
}
cv::Matx44f cv::viz::convertToMatx(const vtkSmartPointer<vtkMatrix4x4>& vtk_matrix)
{
cv::Matx44f m;
@ -1052,13 +1030,6 @@ cv::Matx44f cv::viz::convertToMatx(const vtkSmartPointer<vtkMatrix4x4>& vtk_matr
}
//////////////////////////////////////////////////////////////////////////////////////////////
void cv::viz::convertToEigenMatrix (const vtkSmartPointer<vtkMatrix4x4> &vtk_matrix, Eigen::Matrix4f &m)
{
for (int i = 0; i < 4; i++)
for (int k = 0; k < 4; k++)
m (i,k) = static_cast<float> (vtk_matrix->GetElement (i, k));
}
void cv::viz::Viz3d::VizImpl::setFullScreen (bool mode)
{

@ -1,28 +1,25 @@
#pragma once
#include <opencv2/core.hpp>
#include <opencv2/viz/events.hpp>
#include <opencv2/viz.hpp>
#include "interactor_style.h"
#include "viz_types.h"
#include "common.h"
#include <opencv2/viz/types.hpp>
#include <opencv2/core/affine.hpp>
#include <opencv2/viz/viz3d.hpp>
struct cv::viz::Viz3d::VizImpl
{
public:
typedef cv::Ptr<VizImpl> Ptr;
typedef Viz3d::KeyboardCallback KeyboardCallback;
typedef Viz3d::MouseCallback MouseCallback;
VizImpl (const String &name = String());
VizImpl (const String &name);
virtual ~VizImpl ();
void setFullScreen (bool mode);
void setWindowName (const String &name);
void registerKeyboardCallback(void (*callback)(const KeyboardEvent&, void*), void* cookie = 0);
void registerMouseCallback(void (*callback)(const MouseEvent&, void*), void* cookie = 0);
void registerKeyboardCallback(KeyboardCallback callback, void* cookie = 0);
void registerMouseCallback(MouseCallback callback, void* cookie = 0);
void spin ();
void spinOnce (int time = 1, bool force_redraw = false);
@ -173,9 +170,7 @@ public:
void setWidgetPose(const String &id, const Affine3f &pose);
void updateWidgetPose(const String &id, const Affine3f &pose);
Affine3f getWidgetPose(const String &id) const;
void all_data();
Affine3f getWidgetPose(const String &id) const;
private:
vtkSmartPointer<vtkRenderWindowInteractor> interactor_;
@ -285,12 +280,6 @@ namespace cv
namespace viz
{
//void getTransformationMatrix (const Eigen::Vector4f &origin, const Eigen::Quaternionf& orientation, Eigen::Matrix4f &transformation);
//void convertToVtkMatrix (const Eigen::Matrix4f &m, vtkSmartPointer<vtkMatrix4x4> &vtk_matrix);
void convertToVtkMatrix (const cv::Matx44f& m, vtkSmartPointer<vtkMatrix4x4> &vtk_matrix);
void convertToCvMatrix (const vtkSmartPointer<vtkMatrix4x4> &vtk_matrix, cv::Matx44f &m);
vtkSmartPointer<vtkMatrix4x4> convertToVtkMatrix (const cv::Matx44f &m);
cv::Matx44f convertToMatx(const vtkSmartPointer<vtkMatrix4x4>& vtk_matrix);
@ -300,8 +289,6 @@ namespace cv
* \param[out] vtk_matrix the resultant VTK 4x4 matrix
*/
void convertToVtkMatrix (const Eigen::Vector4f &origin, const Eigen::Quaternion<float> &orientation, vtkSmartPointer<vtkMatrix4x4> &vtk_matrix);
void convertToEigenMatrix (const vtkSmartPointer<vtkMatrix4x4> &vtk_matrix, Eigen::Matrix4f &m);
struct NanFilter
{
@ -366,6 +353,17 @@ namespace cv
ApplyAffine(const ApplyAffine&);
ApplyAffine& operator=(const ApplyAffine&);
};
inline Color vtkcolor(const Color& color)
{
Color scaled_color = color * (1.0/255.0);
std::swap(scaled_color[0], scaled_color[2]);
return scaled_color;
}
inline Vec3d vtkpoint(const Point3f& point) { return Vec3d(point.x, point.y, point.z); }
template<typename _Tp> inline _Tp normalized(const _Tp& v) { return v * 1/cv::norm(v); }
}
}

Loading…
Cancel
Save