|
|
@ -1,14 +1,18 @@ |
|
|
|
#!/usr/bin/env python |
|
|
|
#!/usr/bin/env python |
|
|
|
""" |
|
|
|
""" |
|
|
|
Tracking of rotating point. |
|
|
|
Tracking of rotating point. |
|
|
|
Rotation speed is constant. |
|
|
|
Point moves in a circle and is characterized by a 1D state. |
|
|
|
|
|
|
|
state_k+1 = state_k + speed + process_noise N(0, 1e-5) |
|
|
|
|
|
|
|
The speed is constant. |
|
|
|
Both state and measurements vectors are 1D (a point angle), |
|
|
|
Both state and measurements vectors are 1D (a point angle), |
|
|
|
Measurement is the real point angle + gaussian noise. |
|
|
|
Measurement is the real state + gaussian noise N(0, 1e-1). |
|
|
|
The real and the estimated points are connected with yellow line segment, |
|
|
|
The real and the measured points are connected with red line segment, |
|
|
|
the real and the measured points are connected with red line segment. |
|
|
|
the real and the estimated points are connected with yellow line segment, |
|
|
|
|
|
|
|
the real and the corrected estimated points are connected with green line segment. |
|
|
|
(if Kalman filter works correctly, |
|
|
|
(if Kalman filter works correctly, |
|
|
|
the yellow segment should be shorter than the red one). |
|
|
|
the yellow segment should be shorter than the red one and |
|
|
|
Pressing any key (except ESC) will reset the tracking with a different speed. |
|
|
|
the green segment should be shorter than the yellow one). |
|
|
|
|
|
|
|
Pressing any key (except ESC) will reset the tracking. |
|
|
|
Pressing ESC will stop the program. |
|
|
|
Pressing ESC will stop the program. |
|
|
|
""" |
|
|
|
""" |
|
|
|
# Python 2/3 compatibility |
|
|
|
# Python 2/3 compatibility |
|
|
@ -21,8 +25,7 @@ if PY3: |
|
|
|
import numpy as np |
|
|
|
import numpy as np |
|
|
|
import cv2 as cv |
|
|
|
import cv2 as cv |
|
|
|
|
|
|
|
|
|
|
|
from math import cos, sin, sqrt |
|
|
|
from math import cos, sin, sqrt, pi |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
def main(): |
|
|
|
img_height = 500 |
|
|
|
img_height = 500 |
|
|
@ -30,64 +33,62 @@ def main(): |
|
|
|
kalman = cv.KalmanFilter(2, 1, 0) |
|
|
|
kalman = cv.KalmanFilter(2, 1, 0) |
|
|
|
|
|
|
|
|
|
|
|
code = long(-1) |
|
|
|
code = long(-1) |
|
|
|
|
|
|
|
num_circle_steps = 12 |
|
|
|
cv.namedWindow("Kalman") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while True: |
|
|
|
while True: |
|
|
|
state = 0.1 * np.random.randn(2, 1) |
|
|
|
img = np.zeros((img_height, img_width, 3), np.uint8) |
|
|
|
|
|
|
|
state = np.array([[0.0],[(2 * pi) / num_circle_steps]]) # start state |
|
|
|
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]]) |
|
|
|
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]]) # F. input |
|
|
|
kalman.measurementMatrix = 1. * np.ones((1, 2)) |
|
|
|
kalman.measurementMatrix = 1. * np.eye(1, 2) # H. input |
|
|
|
kalman.processNoiseCov = 1e-5 * np.eye(2) |
|
|
|
kalman.processNoiseCov = 1e-5 * np.eye(2) # Q. input |
|
|
|
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1)) |
|
|
|
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1)) # R. input |
|
|
|
kalman.errorCovPost = 1. * np.ones((2, 2)) |
|
|
|
kalman.errorCovPost = 1. * np.eye(2, 2) # P._k|k KF state var |
|
|
|
kalman.statePost = 0.1 * np.random.randn(2, 1) |
|
|
|
kalman.statePost = 0.1 * np.random.randn(2, 1) # x^_k|k KF state var |
|
|
|
|
|
|
|
|
|
|
|
while True: |
|
|
|
while True: |
|
|
|
def calc_point(angle): |
|
|
|
def calc_point(angle): |
|
|
|
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int), |
|
|
|
return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int), |
|
|
|
np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int)) |
|
|
|
np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int)) |
|
|
|
|
|
|
|
img = img * 1e-3 |
|
|
|
state_angle = state[0, 0] |
|
|
|
state_angle = state[0, 0] |
|
|
|
state_pt = calc_point(state_angle) |
|
|
|
state_pt = calc_point(state_angle) |
|
|
|
|
|
|
|
# advance Kalman filter to next timestep |
|
|
|
|
|
|
|
# updates statePre, statePost, errorCovPre, errorCovPost |
|
|
|
|
|
|
|
# k-> k+1, x'(k) = A*x(k) |
|
|
|
|
|
|
|
# P'(k) = temp1*At + Q |
|
|
|
prediction = kalman.predict() |
|
|
|
prediction = kalman.predict() |
|
|
|
predict_angle = prediction[0, 0] |
|
|
|
|
|
|
|
predict_pt = calc_point(predict_angle) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
predict_pt = calc_point(prediction[0, 0]) # equivalent to calc_point(kalman.statePre[0,0]) |
|
|
|
# generate measurement |
|
|
|
# generate measurement |
|
|
|
|
|
|
|
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1) |
|
|
|
measurement = np.dot(kalman.measurementMatrix, state) + measurement |
|
|
|
measurement = np.dot(kalman.measurementMatrix, state) + measurement |
|
|
|
|
|
|
|
|
|
|
|
measurement_angle = measurement[0, 0] |
|
|
|
measurement_angle = measurement[0, 0] |
|
|
|
measurement_pt = calc_point(measurement_angle) |
|
|
|
measurement_pt = calc_point(measurement_angle) |
|
|
|
|
|
|
|
|
|
|
|
# plot points |
|
|
|
# correct the state estimates based on measurements |
|
|
|
def draw_cross(center, color, d): |
|
|
|
# updates statePost & errorCovPost |
|
|
|
cv.line(img, |
|
|
|
|
|
|
|
(center[0] - d, center[1] - d), (center[0] + d, center[1] + d), |
|
|
|
|
|
|
|
color, 1, cv.LINE_AA, 0) |
|
|
|
|
|
|
|
cv.line(img, |
|
|
|
|
|
|
|
(center[0] + d, center[1] - d), (center[0] - d, center[1] + d), |
|
|
|
|
|
|
|
color, 1, cv.LINE_AA, 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = np.zeros((img_height, img_width, 3), np.uint8) |
|
|
|
|
|
|
|
draw_cross(np.int32(state_pt), (255, 255, 255), 3) |
|
|
|
|
|
|
|
draw_cross(np.int32(measurement_pt), (0, 0, 255), 3) |
|
|
|
|
|
|
|
draw_cross(np.int32(predict_pt), (0, 255, 0), 3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv.LINE_AA, 0) |
|
|
|
|
|
|
|
cv.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv.LINE_AA, 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kalman.correct(measurement) |
|
|
|
kalman.correct(measurement) |
|
|
|
|
|
|
|
improved_pt = calc_point(kalman.statePost[0, 0]) |
|
|
|
|
|
|
|
|
|
|
|
process_noise = sqrt(kalman.processNoiseCov[0,0]) * np.random.randn(2, 1) |
|
|
|
# plot points |
|
|
|
state = np.dot(kalman.transitionMatrix, state) + process_noise |
|
|
|
cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2) |
|
|
|
|
|
|
|
cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2) |
|
|
|
|
|
|
|
cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2) |
|
|
|
|
|
|
|
cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1) |
|
|
|
|
|
|
|
# forecast one step |
|
|
|
|
|
|
|
cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]), |
|
|
|
|
|
|
|
(255, 255, 0), cv.MARKER_SQUARE, 12, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0) # red measurement error |
|
|
|
|
|
|
|
cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0) # yellow pre-meas error |
|
|
|
|
|
|
|
cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0) # green post-meas error |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# update the real process |
|
|
|
|
|
|
|
process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1) |
|
|
|
|
|
|
|
state = np.dot(kalman.transitionMatrix, state) + process_noise # x_k+1 = F x_k + w_k |
|
|
|
|
|
|
|
|
|
|
|
cv.imshow("Kalman", img) |
|
|
|
cv.imshow("Kalman", img) |
|
|
|
|
|
|
|
code = cv.waitKey(1000) |
|
|
|
code = cv.waitKey(100) |
|
|
|
|
|
|
|
if code != -1: |
|
|
|
if code != -1: |
|
|
|
break |
|
|
|
break |
|
|
|
|
|
|
|
|
|
|
|