mirror of https://github.com/opencv/opencv.git
parent
ca1975cada
commit
d5b9563263
5 changed files with 286 additions and 1 deletions
After Width: | Height: | Size: 38 KiB |
@ -0,0 +1,69 @@ |
||||
import cv2 as cv |
||||
import argparse |
||||
|
||||
parser = argparse.ArgumentParser( |
||||
description='This sample shows how to define custom OpenCV deep learning layers in Python. ' |
||||
'Holistically-Nested Edge Detection (https://arxiv.org/abs/1504.06375) neural network ' |
||||
'is used as an example model. Find a pre-trained model at https://github.com/s9xie/hed.') |
||||
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') |
||||
parser.add_argument('--prototxt', help='Path to deploy.prototxt', required=True) |
||||
parser.add_argument('--caffemodel', help='Path to hed_pretrained_bsds.caffemodel', required=True) |
||||
parser.add_argument('--width', help='Resize input image to a specific width', default=500, type=int) |
||||
parser.add_argument('--height', help='Resize input image to a specific height', default=500, type=int) |
||||
args = parser.parse_args() |
||||
|
||||
#! [CropLayer] |
||||
class CropLayer(object): |
||||
def __init__(self, params, blobs): |
||||
self.xstart = 0 |
||||
self.xend = 0 |
||||
self.ystart = 0 |
||||
self.yend = 0 |
||||
|
||||
# Our layer receives two inputs. We need to crop the first input blob |
||||
# to match a shape of the second one (keeping batch size and number of channels) |
||||
def getMemoryShapes(self, inputs): |
||||
inputShape, targetShape = inputs[0], inputs[1] |
||||
batchSize, numChannels = inputShape[0], inputShape[1] |
||||
height, width = targetShape[2], targetShape[3] |
||||
|
||||
self.ystart = (inputShape[2] - targetShape[2]) / 2 |
||||
self.xstart = (inputShape[3] - targetShape[3]) / 2 |
||||
self.yend = self.ystart + height |
||||
self.xend = self.xstart + width |
||||
|
||||
return [[batchSize, numChannels, height, width]] |
||||
|
||||
def forward(self, inputs): |
||||
return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]] |
||||
#! [CropLayer] |
||||
|
||||
#! [Register] |
||||
cv.dnn_registerLayer('Crop', CropLayer) |
||||
#! [Register] |
||||
|
||||
# Load the model. |
||||
net = cv.dnn.readNet(args.prototxt, args.caffemodel) |
||||
|
||||
kWinName = 'Holistically-Nested Edge Detection' |
||||
cv.namedWindow('Input', cv.WINDOW_NORMAL) |
||||
cv.namedWindow(kWinName, cv.WINDOW_NORMAL) |
||||
|
||||
cap = cv.VideoCapture(args.input if args.input else 0) |
||||
while cv.waitKey(1) < 0: |
||||
hasFrame, frame = cap.read() |
||||
if not hasFrame: |
||||
cv.waitKey() |
||||
break |
||||
|
||||
cv.imshow('Input', frame) |
||||
|
||||
inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height), |
||||
mean=(104.00698793, 116.66876762, 122.67891434), |
||||
swapRB=False, crop=False) |
||||
net.setInput(inp) |
||||
|
||||
out = net.forward() |
||||
out = out[0, 0] |
||||
out = cv.resize(out, (frame.shape[1], frame.shape[0])) |
||||
cv.imshow(kWinName, out) |
Loading…
Reference in new issue