|
|
@ -571,81 +571,66 @@ public: |
|
|
|
/****************************************************************************************\
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Logistic Regression * |
|
|
|
* Logistic Regression * |
|
|
|
\****************************************************************************************/ |
|
|
|
\****************************************************************************************/ |
|
|
|
|
|
|
|
namespace cv |
|
|
|
struct CV_EXPORTS_W_MAP CvLR_TrainParams |
|
|
|
{ |
|
|
|
|
|
|
|
struct CV_EXPORTS LogisticRegressionParams |
|
|
|
{ |
|
|
|
{ |
|
|
|
CV_PROP_RW double alpha; |
|
|
|
double alpha; |
|
|
|
CV_PROP_RW int num_iters; |
|
|
|
int num_iters; |
|
|
|
CV_PROP_RW int norm; |
|
|
|
int norm; |
|
|
|
///////////////////////////////////////////////////
|
|
|
|
int regularized; |
|
|
|
// CV_PROP_RW int debug;
|
|
|
|
int train_method; |
|
|
|
///////////////////////////////////////////////////
|
|
|
|
int mini_batch_size; |
|
|
|
CV_PROP_RW int regularized; |
|
|
|
CvTermCriteria term_crit; |
|
|
|
CV_PROP_RW int train_method; |
|
|
|
|
|
|
|
CV_PROP_RW int minibatchsize; |
|
|
|
LogisticRegressionParams(); |
|
|
|
|
|
|
|
LogisticRegressionParams(double alpha, int num_iters, int norm, int regularized, int train_method, int minbatchsize); |
|
|
|
CV_PROP_RW CvTermCriteria term_crit; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvLR_TrainParams(); |
|
|
|
|
|
|
|
///////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// CvLR_TrainParams(double alpha, int num_iters, int norm, int debug, int regularized, int train_method, int minbatchsize);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////
|
|
|
|
|
|
|
|
CvLR_TrainParams(double alpha, int num_iters, int norm, int regularized, int train_method, int minbatchsize); |
|
|
|
|
|
|
|
~CvLR_TrainParams(); |
|
|
|
|
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS_W CvLR : public CvStatModel |
|
|
|
class CV_EXPORTS LogisticRegression |
|
|
|
{ |
|
|
|
{ |
|
|
|
public: |
|
|
|
public: |
|
|
|
CvLR(); |
|
|
|
|
|
|
|
// CvLR(const CvLR_TrainParams& Params);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvLR(const cv::Mat& data, const cv::Mat& labels, const CvLR_TrainParams& params); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
virtual ~CvLR(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
enum { REG_L1=0, REG_L2 = 1}; |
|
|
|
LogisticRegression(); |
|
|
|
enum { BATCH, MINI_BATCH}; |
|
|
|
LogisticRegression(cv::InputArray data_ip, cv::InputArray labels_ip, const LogisticRegressionParams& params); |
|
|
|
|
|
|
|
virtual ~LogisticRegression(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
enum { REG_L1 = 0, REG_L2 = 1}; |
|
|
|
|
|
|
|
enum { BATCH = 0, MINI_BATCH = 1}; |
|
|
|
|
|
|
|
|
|
|
|
virtual bool train(const cv::Mat& data, const cv::Mat& labels);//, const CvLR_TrainParams& params);
|
|
|
|
virtual bool train(cv::InputArray data_ip, cv::InputArray label_ip); |
|
|
|
|
|
|
|
virtual void predict( cv::InputArray data, cv::OutputArray predicted_labels ) const; |
|
|
|
|
|
|
|
|
|
|
|
virtual float predict(const cv::Mat& data, cv::Mat& predicted_labels); |
|
|
|
virtual void save(std::string filepath) const; |
|
|
|
virtual float predict(const cv::Mat& data); |
|
|
|
virtual void load(const std::string filepath); |
|
|
|
|
|
|
|
|
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
|
|
cv::Mat get_learnt_thetas() const; |
|
|
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
virtual void clear(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
virtual cv::Mat get_learnt_mat(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
protected: |
|
|
|
protected: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LogisticRegressionParams params; |
|
|
|
cv::Mat learnt_thetas;
|
|
|
|
cv::Mat learnt_thetas;
|
|
|
|
CvLR_TrainParams params; |
|
|
|
std::string default_model_name; |
|
|
|
|
|
|
|
|
|
|
|
std::map<int, int> forward_mapper; |
|
|
|
std::map<int, int> forward_mapper; |
|
|
|
std::map<int, int> reverse_mapper; |
|
|
|
std::map<int, int> reverse_mapper; |
|
|
|
|
|
|
|
|
|
|
|
virtual bool set_default_params(); |
|
|
|
cv::Mat labels_o; |
|
|
|
virtual cv::Mat calc_sigmoid(const cv::Mat& data); |
|
|
|
cv::Mat labels_n; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static cv::Mat calc_sigmoid(const cv::Mat& data); |
|
|
|
|
|
|
|
|
|
|
|
virtual double compute_cost(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta); |
|
|
|
virtual double compute_cost(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta); |
|
|
|
virtual cv::Mat compute_batch_gradient(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta); |
|
|
|
virtual cv::Mat compute_batch_gradient(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta); |
|
|
|
virtual cv::Mat compute_mini_batch_gradient(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta); |
|
|
|
virtual cv::Mat compute_mini_batch_gradient(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta); |
|
|
|
|
|
|
|
|
|
|
|
virtual std::map<int, int> get_label_map(const cv::Mat& labels); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
virtual bool set_label_map(const cv::Mat& labels); |
|
|
|
virtual bool set_label_map(const cv::Mat& labels); |
|
|
|
virtual cv::Mat remap_labels(const cv::Mat& labels, const std::map<int, int> lmap); |
|
|
|
static cv::Mat remap_labels(const cv::Mat& labels, const std::map<int, int>& lmap); |
|
|
|
|
|
|
|
|
|
|
|
//cv::Mat Mapper;
|
|
|
|
virtual void write(FileStorage& fs) const; |
|
|
|
|
|
|
|
virtual void read(const FileNode& fn); |
|
|
|
cv::Mat labels_o; |
|
|
|
virtual void clear(); |
|
|
|
cv::Mat labels_n; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
}// namespace cv
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Auxilary functions declarations * |
|
|
|
* Auxilary functions declarations * |
|
|
|