partially wrapped features2d framework added feature_homography.py samplepull/13383/head
parent
2ef4e2eeb7
commit
d50cc51070
4 changed files with 161 additions and 34 deletions
@ -0,0 +1,73 @@ |
||||
''' |
||||
Feature homography |
||||
================== |
||||
|
||||
Example of using features2d framework for interactive video homography matching. |
||||
|
||||
Keys |
||||
---- |
||||
SPACE - set reference frame |
||||
ESC - exit |
||||
''' |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
import video |
||||
from common import draw_str |
||||
|
||||
if __name__ == '__main__': |
||||
|
||||
print __doc__ |
||||
|
||||
detector = cv2.FeatureDetector_create('ORB') |
||||
extractor = cv2.DescriptorExtractor_create('ORB') |
||||
matcher = cv2.DescriptorMatcher_create('BruteForce-Hamming') # 'BruteForce-Hamming' # FlannBased |
||||
|
||||
ref_desc = None |
||||
ref_kp = None |
||||
|
||||
green, red = (0, 255, 0), (0, 0, 255) |
||||
|
||||
cap = video.create_capture(0) |
||||
while True: |
||||
ret, img = cap.read() |
||||
vis = img.copy() |
||||
kp = detector.detect(img) |
||||
|
||||
for p in kp: |
||||
x, y = np.int32(p.pt) |
||||
r = int(0.5*p.size) |
||||
cv2.circle(vis, (x, y), r, (0, 255, 0)) |
||||
draw_str(vis, (20, 20), 'feature_n: %d' % len(kp)) |
||||
|
||||
desc = extractor.compute(img, kp) |
||||
if ref_desc is not None: |
||||
raw_matches = matcher.knnMatch(desc, ref_desc, 2) |
||||
eps = 1e-5 |
||||
matches = [(m1.trainIdx, m1.queryIdx) for m1, m2 in raw_matches if (m1.distance+eps) / (m2.distance+eps) < 0.7] |
||||
match_n = len(matches) |
||||
|
||||
inliner_n = 0 |
||||
if match_n > 10: |
||||
p0 = np.float32( [ref_kp[i].pt for i, j in matches] ) |
||||
p1 = np.float32( [kp[j].pt for i, j in matches] ) |
||||
|
||||
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 10.0) |
||||
inlier_n = sum(status) |
||||
if inlier_n > 10: |
||||
for (x1, y1), (x2, y2), inlier in zip(np.int32(p0), np.int32(p1), status): |
||||
cv2.line(vis, (x1, y1), (x2, y2), (red, green)[inlier]) |
||||
|
||||
h, w = img.shape[:2] |
||||
overlay = cv2.warpPerspective(ref_img, H, (w, h)) |
||||
vis = cv2.addWeighted(vis, 0.5, overlay, 0.5, 0.0) |
||||
draw_str(vis, (20, 40), 'matched: %d ( %d outliers )' % (match_n, match_n-inlier_n)) |
||||
|
||||
cv2.imshow('img', vis) |
||||
ch = cv2.waitKey(1) |
||||
if ch == ord(' '): |
||||
ref_desc = desc |
||||
ref_kp = kp |
||||
ref_img = img.copy() |
||||
if ch == 27: |
||||
break |
Loading…
Reference in new issue