|
|
|
@ -62,8 +62,7 @@ public: |
|
|
|
|
private: |
|
|
|
|
virtual void run( int start_from ); |
|
|
|
|
static float decisionFunction(const Mat &sample, const Mat &weights, float shift); |
|
|
|
|
void makeTrainData(Mat weights, float shift); |
|
|
|
|
void makeTestData(Mat weights, float shift); |
|
|
|
|
void makeData(int samplesCount, Mat weights, float shift, RNG rng, Mat &samples, Mat & responses); |
|
|
|
|
void generateSameBorders(int featureCount); |
|
|
|
|
void generateDifferentBorders(int featureCount); |
|
|
|
|
|
|
|
|
@ -108,46 +107,28 @@ void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void CV_SVMSGDTrainTest::makeTrainData(Mat weights, float shift) |
|
|
|
|
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift) |
|
|
|
|
{ |
|
|
|
|
int datasize = 100000; |
|
|
|
|
int featureCount = weights.cols; |
|
|
|
|
RNG rng(0); |
|
|
|
|
|
|
|
|
|
cv::Mat samples = cv::Mat::zeros(datasize, featureCount, CV_32FC1); |
|
|
|
|
|
|
|
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
|
|
|
{ |
|
|
|
|
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1); |
|
|
|
|
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++) |
|
|
|
|
{ |
|
|
|
|
responses.at<float>(sampleIndex) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1.f : -1.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
data = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses); |
|
|
|
|
return static_cast<float>(sample.dot(weights)) + shift; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift) |
|
|
|
|
void CV_SVMSGDTrainTest::makeData(int samplesCount, Mat weights, float shift, RNG rng, Mat &samples, Mat & responses) |
|
|
|
|
{ |
|
|
|
|
int testSamplesCount = 100000; |
|
|
|
|
int featureCount = weights.cols; |
|
|
|
|
cv::RNG rng(42); |
|
|
|
|
|
|
|
|
|
testSamples.create(testSamplesCount, featureCount, CV_32FC1); |
|
|
|
|
samples.create(samplesCount, featureCount, CV_32FC1); |
|
|
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
|
|
|
{ |
|
|
|
|
rng.fill(testSamples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second); |
|
|
|
|
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
testResponses.create(testSamplesCount, 1, CV_32FC1); |
|
|
|
|
responses.create(samplesCount, 1, CV_32FC1); |
|
|
|
|
|
|
|
|
|
for (int i = 0 ; i < testSamplesCount; i++) |
|
|
|
|
for (int i = 0 ; i < samplesCount; i++) |
|
|
|
|
{ |
|
|
|
|
testResponses.at<float>(i) = decisionFunction(testSamples.row(i), weights, shift) > 0 ? 1.f : -1.f; |
|
|
|
|
responses.at<float>(i) = decisionFunction(samples.row(i), weights, shift) > 0 ? 1.f : -1.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision) |
|
|
|
@ -169,13 +150,16 @@ CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDat |
|
|
|
|
CV_Error(CV_StsBadArg, "Unknown train data type"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
makeTrainData(weights, shift); |
|
|
|
|
makeTestData(weights, shift); |
|
|
|
|
} |
|
|
|
|
RNG rng(0); |
|
|
|
|
|
|
|
|
|
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift) |
|
|
|
|
{ |
|
|
|
|
return static_cast<float>(sample.dot(weights)) + shift; |
|
|
|
|
Mat trainSamples; |
|
|
|
|
Mat trainResponses; |
|
|
|
|
int trainSamplesCount = 10000; |
|
|
|
|
makeData(trainSamplesCount, weights, shift, rng, trainSamples, trainResponses); |
|
|
|
|
data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses); |
|
|
|
|
|
|
|
|
|
int testSamplesCount = 100000; |
|
|
|
|
makeData(testSamplesCount, weights, shift, rng, testSamples, testResponses); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void CV_SVMSGDTrainTest::run( int /*start_from*/ ) |
|
|
|
@ -205,7 +189,6 @@ void CV_SVMSGDTrainTest::run( int /*start_from*/ ) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void makeWeightsAndShift(int featureCount, Mat &weights, float &shift) |
|
|
|
|
{ |
|
|
|
|
weights.create(1, featureCount, CV_32FC1); |
|
|
|
@ -253,7 +236,7 @@ TEST(ML_SVMSGD, trainSameScale100) |
|
|
|
|
float shift = 0; |
|
|
|
|
makeWeightsAndShift(featureCount, weights, shift); |
|
|
|
|
|
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE); |
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE, 0.02); |
|
|
|
|
test.safe_run(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|