|
|
|
@ -236,10 +236,27 @@ void SegmentationModel::segment(InputArray frame, OutputArray mask) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void disableRegionNMS(Net& net) |
|
|
|
|
{ |
|
|
|
|
for (String& name : net.getUnconnectedOutLayersNames()) |
|
|
|
|
{ |
|
|
|
|
int layerId = net.getLayerId(name); |
|
|
|
|
Ptr<RegionLayer> layer = net.getLayer(layerId).dynamicCast<RegionLayer>(); |
|
|
|
|
if (!layer.empty()) |
|
|
|
|
{ |
|
|
|
|
layer->nmsThreshold = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
DetectionModel::DetectionModel(const String& model, const String& config) |
|
|
|
|
: Model(model, config) {}; |
|
|
|
|
: Model(model, config) { |
|
|
|
|
disableRegionNMS(*this); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
DetectionModel::DetectionModel(const Net& network) : Model(network) {}; |
|
|
|
|
DetectionModel::DetectionModel(const Net& network) : Model(network) { |
|
|
|
|
disableRegionNMS(*this); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds, |
|
|
|
|
CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes, |
|
|
|
@ -264,9 +281,6 @@ void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds, |
|
|
|
|
int lastLayerId = getLayerId(layerNames.back()); |
|
|
|
|
Ptr<Layer> lastLayer = getLayer(lastLayerId); |
|
|
|
|
|
|
|
|
|
std::vector<int> predClassIds; |
|
|
|
|
std::vector<Rect> predBoxes; |
|
|
|
|
std::vector<float> predConf; |
|
|
|
|
if (lastLayer->type == "DetectionOutput") |
|
|
|
|
{ |
|
|
|
|
// Network produces output blob with a shape 1x1xNx7 where N is a number of
|
|
|
|
@ -302,15 +316,18 @@ void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds, |
|
|
|
|
top = std::max(0, std::min(top, frameHeight - 1)); |
|
|
|
|
width = std::max(1, std::min(width, frameWidth - left)); |
|
|
|
|
height = std::max(1, std::min(height, frameHeight - top)); |
|
|
|
|
predBoxes.emplace_back(left, top, width, height); |
|
|
|
|
boxes.emplace_back(left, top, width, height); |
|
|
|
|
|
|
|
|
|
predClassIds.push_back(static_cast<int>(data[j + 1])); |
|
|
|
|
predConf.push_back(conf); |
|
|
|
|
classIds.push_back(static_cast<int>(data[j + 1])); |
|
|
|
|
confidences.push_back(conf); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if (lastLayer->type == "Region") |
|
|
|
|
{ |
|
|
|
|
std::vector<int> predClassIds; |
|
|
|
|
std::vector<Rect> predBoxes; |
|
|
|
|
std::vector<float> predConf; |
|
|
|
|
for (int i = 0; i < detections.size(); ++i) |
|
|
|
|
{ |
|
|
|
|
// Network produces output blob with a shape NxC where N is a number of
|
|
|
|
@ -343,35 +360,45 @@ void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds, |
|
|
|
|
predBoxes.emplace_back(left, top, width, height); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown output layer type: \"" + lastLayer->type + "\""); |
|
|
|
|
|
|
|
|
|
if (nmsThreshold) |
|
|
|
|
{ |
|
|
|
|
std::vector<int> indices; |
|
|
|
|
NMSBoxes(predBoxes, predConf, confThreshold, nmsThreshold, indices); |
|
|
|
|
|
|
|
|
|
boxes.reserve(indices.size()); |
|
|
|
|
confidences.reserve(indices.size()); |
|
|
|
|
classIds.reserve(indices.size()); |
|
|
|
|
|
|
|
|
|
for (int idx : indices) |
|
|
|
|
if (nmsThreshold) |
|
|
|
|
{ |
|
|
|
|
boxes.push_back(predBoxes[idx]); |
|
|
|
|
confidences.push_back(predConf[idx]); |
|
|
|
|
classIds.push_back(predClassIds[idx]); |
|
|
|
|
std::map<int, std::vector<size_t> > class2indices; |
|
|
|
|
for (size_t i = 0; i < predClassIds.size(); i++) |
|
|
|
|
{ |
|
|
|
|
if (predConf[i] >= confThreshold) |
|
|
|
|
{ |
|
|
|
|
class2indices[predClassIds[i]].push_back(i); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
for (const auto& it : class2indices) |
|
|
|
|
{ |
|
|
|
|
std::vector<Rect> localBoxes; |
|
|
|
|
std::vector<float> localConfidences; |
|
|
|
|
for (size_t idx : it.second) |
|
|
|
|
{ |
|
|
|
|
localBoxes.push_back(predBoxes[idx]); |
|
|
|
|
localConfidences.push_back(predConf[idx]); |
|
|
|
|
} |
|
|
|
|
std::vector<int> indices; |
|
|
|
|
NMSBoxes(localBoxes, localConfidences, confThreshold, nmsThreshold, indices); |
|
|
|
|
classIds.resize(classIds.size() + indices.size(), it.first); |
|
|
|
|
for (int idx : indices) |
|
|
|
|
{ |
|
|
|
|
boxes.push_back(localBoxes[idx]); |
|
|
|
|
confidences.push_back(localConfidences[idx]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
boxes = std::move(predBoxes); |
|
|
|
|
classIds = std::move(predClassIds); |
|
|
|
|
confidences = std::move(predConf); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
boxes = std::move(predBoxes); |
|
|
|
|
classIds = std::move(predClassIds); |
|
|
|
|
confidences = std::move(predConf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown output layer type: \"" + lastLayer->type + "\""); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
|