|
|
|
@ -171,6 +171,8 @@ bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu(); r |
|
|
|
|
bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu(); return false; } |
|
|
|
|
void cv::gpu::DeviceInfo::query() { throw_nogpu(); } |
|
|
|
|
void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu(); } |
|
|
|
|
void cv::gpu::printCudaDeviceInfo(int device) { throw_nogpu(); } |
|
|
|
|
void cv::gpu::printShortCudaDeviceInfo(int device) { throw_nogpu(); } |
|
|
|
|
|
|
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
|
|
|
|
|
@ -271,5 +273,161 @@ void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) |
|
|
|
|
setDevice(prev_device_id); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
template <class T> void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device) |
|
|
|
|
{ |
|
|
|
|
*attribute = T(); |
|
|
|
|
CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu??
|
|
|
|
|
if( CUDA_SUCCESS == error ) |
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
printf("Driver API error = %04d\n", error); |
|
|
|
|
cv::gpu::error("driver API error", __FILE__, __LINE__);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int convertSMVer2Cores(int major, int minor) |
|
|
|
|
{ |
|
|
|
|
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
|
|
|
|
|
typedef struct { |
|
|
|
|
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
|
|
|
|
|
int Cores; |
|
|
|
|
} SMtoCores; |
|
|
|
|
|
|
|
|
|
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, { -1, -1 } }; |
|
|
|
|
|
|
|
|
|
int index = 0; |
|
|
|
|
while (gpuArchCoresPerSM[index].SM != -1) |
|
|
|
|
{ |
|
|
|
|
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) |
|
|
|
|
return gpuArchCoresPerSM[index].Cores; |
|
|
|
|
index++; |
|
|
|
|
} |
|
|
|
|
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::printCudaDeviceInfo(int device) |
|
|
|
|
{ |
|
|
|
|
int count = getCudaEnabledDeviceCount(); |
|
|
|
|
bool valid = (device >= 0) && (device < count); |
|
|
|
|
|
|
|
|
|
int beg = valid ? device : 0; |
|
|
|
|
int end = valid ? device+1 : count; |
|
|
|
|
|
|
|
|
|
printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n"); |
|
|
|
|
printf("Device count: %d\n", count); |
|
|
|
|
|
|
|
|
|
int driverVersion = 0, runtimeVersion = 0; |
|
|
|
|
cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); |
|
|
|
|
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); |
|
|
|
|
|
|
|
|
|
const char *computeMode[] = { |
|
|
|
|
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", |
|
|
|
|
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", |
|
|
|
|
"Prohibited (no host thread can use ::cudaSetDevice() with this device)", |
|
|
|
|
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", |
|
|
|
|
"Unknown", |
|
|
|
|
NULL |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
for(int dev = beg; dev < end; ++dev) |
|
|
|
|
{
|
|
|
|
|
cudaDeviceProp prop; |
|
|
|
|
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); |
|
|
|
|
|
|
|
|
|
printf("\nDevice %d: \"%s\"\n", dev, prop.name);
|
|
|
|
|
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); |
|
|
|
|
printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor);
|
|
|
|
|
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem);
|
|
|
|
|
printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", |
|
|
|
|
prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor), |
|
|
|
|
convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount); |
|
|
|
|
printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f); |
|
|
|
|
|
|
|
|
|
#if (CUDART_VERSION >= 4000) |
|
|
|
|
// This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output
|
|
|
|
|
int memoryClock, memBusWidth, L2CacheSize; |
|
|
|
|
getCudaAttribute<int>( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev );
|
|
|
|
|
getCudaAttribute<int>( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev );
|
|
|
|
|
getCudaAttribute<int>( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev ); |
|
|
|
|
|
|
|
|
|
printf(" Memory Clock rate: %.2f Mhz\n", memoryClock * 1e-3f); |
|
|
|
|
printf(" Memory Bus Width: %d-bit\n", memBusWidth); |
|
|
|
|
if (L2CacheSize) |
|
|
|
|
printf(" L2 Cache Size: %d bytes\n", L2CacheSize); |
|
|
|
|
|
|
|
|
|
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", |
|
|
|
|
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1], |
|
|
|
|
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]); |
|
|
|
|
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", |
|
|
|
|
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1], |
|
|
|
|
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]); |
|
|
|
|
#endif |
|
|
|
|
printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem); |
|
|
|
|
printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock); |
|
|
|
|
printf(" Total number of registers available per block: %d\n", prop.regsPerBlock); |
|
|
|
|
printf(" Warp size: %d\n", prop.warpSize); |
|
|
|
|
printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock); |
|
|
|
|
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]); |
|
|
|
|
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]); |
|
|
|
|
printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch); |
|
|
|
|
printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment); |
|
|
|
|
|
|
|
|
|
#if CUDART_VERSION >= 4000 |
|
|
|
|
printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount); |
|
|
|
|
#else |
|
|
|
|
printf(" Concurrent copy and execution: %s\n", prop.deviceOverlap ? "Yes" : "No"); |
|
|
|
|
#endif |
|
|
|
|
printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No"); |
|
|
|
|
printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No"); |
|
|
|
|
printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No"); |
|
|
|
|
|
|
|
|
|
printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No"); |
|
|
|
|
printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No"); |
|
|
|
|
printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No"); |
|
|
|
|
printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No"); |
|
|
|
|
#if CUDART_VERSION >= 4000 |
|
|
|
|
printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No"); |
|
|
|
|
printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID ); |
|
|
|
|
#endif |
|
|
|
|
printf(" Compute Mode:\n"); |
|
|
|
|
printf(" %s \n", computeMode[prop.computeMode]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
printf("\n");
|
|
|
|
|
printf("deviceQuery, CUDA Driver = CUDART"); |
|
|
|
|
printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100); |
|
|
|
|
printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100); |
|
|
|
|
printf(", NumDevs = %d\n\n", count);
|
|
|
|
|
fflush(stdout); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::printShortCudaDeviceInfo(int device) |
|
|
|
|
{ |
|
|
|
|
int count = getCudaEnabledDeviceCount(); |
|
|
|
|
bool valid = (device >= 0) && (device < count); |
|
|
|
|
|
|
|
|
|
int beg = valid ? device : 0; |
|
|
|
|
int end = valid ? device+1 : count; |
|
|
|
|
|
|
|
|
|
int driverVersion = 0, runtimeVersion = 0; |
|
|
|
|
cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); |
|
|
|
|
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); |
|
|
|
|
|
|
|
|
|
for(int dev = beg; dev < end; ++dev) |
|
|
|
|
{
|
|
|
|
|
cudaDeviceProp prop; |
|
|
|
|
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); |
|
|
|
|
|
|
|
|
|
const char *arch_str = prop.major < 2 ? " (not Fermi)" : ""; |
|
|
|
|
printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f);
|
|
|
|
|
printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
|
|
|
|
|
printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); |
|
|
|
|
} |
|
|
|
|
fflush(stdout); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|