mirror of https://github.com/opencv/opencv.git
Merge pull request #12528 from dkurt:dnn_py_tests
commit
d389edd843
2 changed files with 194 additions and 14 deletions
@ -0,0 +1,179 @@ |
||||
#!/usr/bin/env python |
||||
import os |
||||
import cv2 as cv |
||||
import numpy as np |
||||
|
||||
from tests_common import NewOpenCVTests |
||||
|
||||
def normAssert(test, a, b, lInf=1e-5): |
||||
test.assertLess(np.max(np.abs(a - b)), lInf) |
||||
|
||||
def inter_area(box1, box2): |
||||
x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2]) |
||||
y_min, y_max = max(box1[1], box2[1]), min(box1[3], box2[3]) |
||||
return (x_max - x_min) * (y_max - y_min) |
||||
|
||||
def area(box): |
||||
return (box[2] - box[0]) * (box[3] - box[1]) |
||||
|
||||
def box2str(box): |
||||
left, top = box[0], box[1] |
||||
width, height = box[2] - left, box[3] - top |
||||
return '[%f x %f from (%f, %f)]' % (width, height, left, top) |
||||
|
||||
def normAssertDetections(test, ref, out, confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4): |
||||
ref = np.array(ref, np.float32) |
||||
refClassIds, testClassIds = ref[:, 1], out[:, 1] |
||||
refScores, testScores = ref[:, 2], out[:, 2] |
||||
refBoxes, testBoxes = ref[:, 3:], out[:, 3:] |
||||
|
||||
matchedRefBoxes = [False] * len(refBoxes) |
||||
errMsg = '' |
||||
for i in range(len(refBoxes)): |
||||
testScore = testScores[i] |
||||
if testScore < confThreshold: |
||||
continue |
||||
|
||||
testClassId, testBox = testClassIds[i], testBoxes[i] |
||||
matched = False |
||||
for j in range(len(refBoxes)): |
||||
if (not matchedRefBoxes[j]) and testClassId == refClassIds[j] and \ |
||||
abs(testScore - refScores[j]) < scores_diff: |
||||
interArea = inter_area(testBox, refBoxes[j]) |
||||
iou = interArea / (area(testBox) + area(refBoxes[j]) - interArea) |
||||
if abs(iou - 1.0) < boxes_iou_diff: |
||||
matched = True |
||||
matchedRefBoxes[j] = True |
||||
if not matched: |
||||
errMsg += '\nUnmatched prediction: class %d score %f box %s' % (testClassId, testScore, box2str(testBox)) |
||||
|
||||
for i in range(len(refBoxes)): |
||||
if (not matchedRefBoxes[i]) and refScores[i] > confThreshold: |
||||
errMsg += '\nUnmatched reference: class %d score %f box %s' % (refClassIds[i], refScores[i], box2str(refBoxes[i])) |
||||
if errMsg: |
||||
test.fail(errMsg) |
||||
|
||||
|
||||
# Returns a simple one-layer network created from Caffe's format |
||||
def getSimpleNet(): |
||||
prototxt = """ |
||||
name: "simpleNet" |
||||
input: "data" |
||||
layer { |
||||
type: "Identity" |
||||
name: "testLayer" |
||||
top: "testLayer" |
||||
bottom: "data" |
||||
} |
||||
""" |
||||
return cv.dnn.readNetFromCaffe(bytearray(prototxt, 'utf8')) |
||||
|
||||
|
||||
def testBackendAndTarget(backend, target): |
||||
net = getSimpleNet() |
||||
net.setPreferableBackend(backend) |
||||
net.setPreferableTarget(target) |
||||
inp = np.random.standard_normal([1, 2, 3, 4]).astype(np.float32) |
||||
try: |
||||
net.setInput(inp) |
||||
net.forward() |
||||
except BaseException as e: |
||||
return False |
||||
return True |
||||
|
||||
|
||||
haveInfEngine = testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU) |
||||
dnnBackendsAndTargets = [ |
||||
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
||||
] |
||||
|
||||
if haveInfEngine: |
||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU]) |
||||
if testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD): |
||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD]) |
||||
|
||||
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL(): |
||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL]) |
||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16]) |
||||
if haveInfEngine: |
||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL]) |
||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16]) |
||||
|
||||
|
||||
def printParams(backend, target): |
||||
backendNames = { |
||||
cv.dnn.DNN_BACKEND_OPENCV: 'OCV', |
||||
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: 'DLIE' |
||||
} |
||||
targetNames = { |
||||
cv.dnn.DNN_TARGET_CPU: 'CPU', |
||||
cv.dnn.DNN_TARGET_OPENCL: 'OCL', |
||||
cv.dnn.DNN_TARGET_OPENCL_FP16: 'OCL_FP16', |
||||
cv.dnn.DNN_TARGET_MYRIAD: 'MYRIAD' |
||||
} |
||||
print('%s/%s' % (backendNames[backend], targetNames[target])) |
||||
|
||||
|
||||
class dnn_test(NewOpenCVTests): |
||||
|
||||
def find_dnn_file(self, filename): |
||||
return self.find_file(filename, [os.environ['OPENCV_DNN_TEST_DATA_PATH']]) |
||||
|
||||
def test_blobFromImage(self): |
||||
np.random.seed(324) |
||||
|
||||
width = 6 |
||||
height = 7 |
||||
scale = 1.0/127.5 |
||||
mean = (10, 20, 30) |
||||
|
||||
# Test arguments names. |
||||
img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8) |
||||
blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, True, False) |
||||
blob_args = cv.dnn.blobFromImage(img, scalefactor=scale, size=(width, height), |
||||
mean=mean, swapRB=True, crop=False) |
||||
normAssert(self, blob, blob_args) |
||||
|
||||
# Test values. |
||||
target = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR) |
||||
target = target.astype(np.float32) |
||||
target = target[:,:,[2, 1, 0]] # BGR2RGB |
||||
target[:,:,0] -= mean[0] |
||||
target[:,:,1] -= mean[1] |
||||
target[:,:,2] -= mean[2] |
||||
target *= scale |
||||
target = target.transpose(2, 0, 1).reshape(1, 3, height, width) # to NCHW |
||||
normAssert(self, blob, target) |
||||
|
||||
|
||||
def test_face_detection(self): |
||||
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt') |
||||
model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel') |
||||
|
||||
img = self.get_sample('gpu/lbpcascade/er.png') |
||||
blob = cv.dnn.blobFromImage(img, mean=(104, 177, 123), swapRB=False, crop=False) |
||||
|
||||
ref = [[0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631], |
||||
[0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168], |
||||
[0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290], |
||||
[0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477], |
||||
[0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494], |
||||
[0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801]] |
||||
|
||||
print('\n') |
||||
for backend, target in dnnBackendsAndTargets: |
||||
printParams(backend, target) |
||||
|
||||
net = cv.dnn.readNet(proto, model) |
||||
net.setPreferableBackend(backend) |
||||
net.setPreferableTarget(target) |
||||
net.setInput(blob) |
||||
out = net.forward().reshape(-1, 7) |
||||
|
||||
scoresDiff = 4e-3 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-5 |
||||
iouDiff = 2e-2 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-4 |
||||
|
||||
normAssertDetections(self, ref, out, 0.5, scoresDiff, iouDiff) |
||||
|
||||
if __name__ == '__main__': |
||||
NewOpenCVTests.bootstrap() |
Loading…
Reference in new issue