mirror of https://github.com/opencv/opencv.git
parent
57f917d6f2
commit
d2c2c07ad2
3 changed files with 1168 additions and 43 deletions
@ -1,25 +1,61 @@ |
||||
#include "precomp.hpp" |
||||
#include <iostream> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
const int ARITHM_NTESTS = 1000; |
||||
const int ARITHM_RNG_SEED = -1; |
||||
const int ARITHM_MAX_NDIMS = 4; |
||||
const int ARITHM_MAX_SIZE_LOG = 10; |
||||
const int ARITHM_MAX_CHANNELS = 4; |
||||
|
||||
static void getArithmValueRange(int depth, double& minval, double& maxval) |
||||
{ |
||||
minval = depth < CV_32S ? cvtest::getMinVal(depth) : depth == CV_32S ? -1000000 : -1000.; |
||||
maxval = depth < CV_32S ? cvtest::getMinVal(depth) : depth == CV_32S ? 1000000 : 1000.; |
||||
} |
||||
|
||||
static double getArithmMaxErr(int depth) |
||||
{ |
||||
return depth < CV_32F ? 0 : 4; |
||||
} |
||||
|
||||
TEST(ArithmTest, add) |
||||
{ |
||||
typedef uchar _Tp; |
||||
|
||||
Mat A(30,30,DataType<_Tp>::type), B(A.size(), A.type()), C0, C; |
||||
RNG rng(-1); |
||||
rng.fill(A, RNG::UNIFORM, Scalar::all(0), Scalar::all(256)); |
||||
rng.fill(B, RNG::UNIFORM, Scalar::all(0), Scalar::all(256)); |
||||
C0.create(A.size(), A.type()); |
||||
int i, j, cols = A.cols*A.channels(); |
||||
for(i = 0; i < A.rows; i++) |
||||
int testIdx = 0; |
||||
RNG rng(ARITHM_RNG_SEED); |
||||
for( testIdx = 0; testIdx < ARITHM_NTESTS; testIdx++ ) |
||||
{ |
||||
const _Tp* aptr = A.ptr<_Tp>(i); |
||||
const _Tp* bptr = B.ptr<_Tp>(i); |
||||
_Tp* cptr = C0.ptr<_Tp>(i); |
||||
for(j = 0; j < cols; j++) |
||||
cptr[j] = saturate_cast<_Tp>(aptr[j] + bptr[j]); |
||||
double minval, maxval; |
||||
vector<int> size; |
||||
cvtest::randomSize(rng, 2, ARITHM_MAX_NDIMS, ARITHM_MAX_SIZE_LOG, size); |
||||
int type = cvtest::randomType(rng, cvtest::TYPE_MASK_ALL, 1, ARITHM_MAX_CHANNELS); |
||||
int depth = CV_MAT_DEPTH(type); |
||||
bool haveMask = rng.uniform(0, 4) == 0; |
||||
|
||||
getArithmValueRange(depth, minval, maxval); |
||||
Mat src1 = cvtest::randomMat(rng, size, type, minval, maxval, true); |
||||
Mat src2 = cvtest::randomMat(rng, size, type, minval, maxval, true); |
||||
Mat dst0 = cvtest::randomMat(rng, size, type, minval, maxval, false); |
||||
Mat dst = cvtest::randomMat(rng, size, type, minval, maxval, true); |
||||
Mat mask; |
||||
if( haveMask ) |
||||
{ |
||||
mask = cvtest::randomMat(rng, size, CV_8U, 0, 2, true); |
||||
cvtest::copy(dst0, dst); |
||||
cvtest::add(src1, 1, src2, 1, Scalar::all(0), dst0, dst.type()); |
||||
cvtest::copy(dst, dst0, mask, true); |
||||
add(src1, src2, dst, mask); |
||||
} |
||||
else |
||||
{ |
||||
cvtest::add(src1, 1, src2, 1, Scalar::all(0), dst0, dst.type()); |
||||
add(src1, src2, dst); |
||||
} |
||||
|
||||
double maxErr = getArithmMaxErr(depth); |
||||
vector<int> pos; |
||||
ASSERT_TRUE(cvtest::cmpEps(dst0, dst, maxErr, &pos)) << "position: " << Mat(pos); |
||||
} |
||||
add(A, B, C); |
||||
EXPECT_EQ(norm(C, C0, NORM_INF), 0); |
||||
} |
||||
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue