diff --git a/modules/core/include/opencv2/core/base.hpp b/modules/core/include/opencv2/core/base.hpp index 0aeb055019..5459567cd0 100644 --- a/modules/core/include/opencv2/core/base.hpp +++ b/modules/core/include/opencv2/core/base.hpp @@ -424,7 +424,22 @@ The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release configurations while CV_DbgAssert is only retained in the Debug configuration. */ -#define CV_Assert( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) + +#define CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N +#define CV_VA_NUM_ARGS(...) CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) + +#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) +#define CV_Assert_2( expr1, expr2 ) CV_Assert_1(expr1); CV_Assert_1(expr2) +#define CV_Assert_3( expr1, expr2, expr3 ) CV_Assert_2(expr1, expr2); CV_Assert_1(expr3) +#define CV_Assert_4( expr1, expr2, expr3, expr4 ) CV_Assert_3(expr1, expr2, expr3); CV_Assert_1(expr4) +#define CV_Assert_5( expr1, expr2, expr3, expr4, expr5 ) CV_Assert_4(expr1, expr2, expr3, expr4); CV_Assert_1(expr5) +#define CV_Assert_6( expr1, expr2, expr3, expr4, expr5, expr6 ) CV_Assert_5(expr1, expr2, expr3, expr4, expr5); CV_Assert_1(expr6) +#define CV_Assert_7( expr1, expr2, expr3, expr4, expr5, expr6, expr7 ) CV_Assert_6(expr1, expr2, expr3, expr4, expr5, expr6 ); CV_Assert_1(expr7) +#define CV_Assert_8( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ) CV_Assert_7(expr1, expr2, expr3, expr4, expr5, expr6, expr7 ); CV_Assert_1(expr8) +#define CV_Assert_9( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ) CV_Assert_8(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ); CV_Assert_1(expr9) +#define CV_Assert_10( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9, expr10 ) CV_Assert_9(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ); CV_Assert_1(expr10) + +#define CV_Assert(...) CVAUX_CONCAT(CV_Assert_, CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__) /** same as CV_Error(code,msg), but does not return */ #define CV_ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ ) diff --git a/modules/core/src/matmul.cpp b/modules/core/src/matmul.cpp index c84f8a7a0e..514968ad54 100644 --- a/modules/core/src/matmul.cpp +++ b/modules/core/src/matmul.cpp @@ -796,7 +796,7 @@ static bool ocl_gemm( InputArray matA, InputArray matB, double alpha, int depth = matA.depth(), cn = matA.channels(); int type = CV_MAKETYPE(depth, cn); - CV_Assert( type == matB.type() && (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); + CV_Assert( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); const ocl::Device & dev = ocl::Device::getDefault(); bool doubleSupport = dev.doubleFPConfig() > 0; @@ -1555,7 +1555,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha, Size a_size = A.size(), d_size; int len = 0, type = A.type(); - CV_Assert( type == B.type() && (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); + CV_Assert( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); switch( flags & (GEMM_1_T|GEMM_2_T) ) { @@ -1583,7 +1583,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha, if( !C.empty() ) { - CV_Assert( C.type() == type && + CV_Assert( C.type() == type, (((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) || ((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height))); } @@ -2537,7 +2537,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, { CV_INSTRUMENT_REGION() - CV_Assert( data && nsamples > 0 ); + CV_Assert( data, nsamples > 0 ); Size size = data[0].size(); int sz = size.width * size.height, esz = (int)data[0].elemSize(); int type = data[0].type(); @@ -2560,7 +2560,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, for( int i = 0; i < nsamples; i++ ) { - CV_Assert( data[i].size() == size && data[i].type() == type ); + CV_Assert( data[i].size() == size, data[i].type() == type ); if( data[i].isContinuous() ) memcpy( _data.ptr(i), data[i].ptr(), sz*esz ); else @@ -2596,7 +2596,7 @@ void cv::calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray int i = 0; for(std::vector::iterator each = src.begin(); each != src.end(); ++each, ++i ) { - CV_Assert( (*each).size() == size && (*each).type() == type ); + CV_Assert( (*each).size() == size, (*each).type() == type ); Mat dataRow(size.height, size.width, type, _data.ptr(i)); (*each).copyTo(dataRow); } @@ -2675,8 +2675,8 @@ double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar ) AutoBuffer buf(len); double result = 0; - CV_Assert( type == v2.type() && type == icovar.type() && - sz == v2.size() && len == icovar.rows && len == icovar.cols ); + CV_Assert( type == v2.type(), type == icovar.type(), + sz == v2.size(), len == icovar.rows && len == icovar.cols ); sz.width *= v1.channels(); if( v1.isContinuous() && v2.isContinuous() ) @@ -2968,8 +2968,8 @@ void cv::mulTransposed( InputArray _src, OutputArray _dst, bool ata, if( !delta.empty() ) { - CV_Assert( delta.channels() == 1 && - (delta.rows == src.rows || delta.rows == 1) && + CV_Assert( delta.channels() == 1, + (delta.rows == src.rows || delta.rows == 1), (delta.cols == src.cols || delta.cols == 1)); if( delta.type() != dtype ) delta.convertTo(delta, dtype); @@ -3380,7 +3380,7 @@ double Mat::dot(InputArray _mat) const Mat mat = _mat.getMat(); int cn = channels(); DotProdFunc func = getDotProdFunc(depth()); - CV_Assert( mat.type() == type() && mat.size == size && func != 0 ); + CV_Assert( mat.type() == type(), mat.size == size, func != 0 ); if( isContinuous() && mat.isContinuous() ) { @@ -3416,8 +3416,8 @@ CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha, if( Carr ) C = cv::cvarrToMat(Carr); - CV_Assert( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)) && - (D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)) && + CV_Assert( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)), + (D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)), D.type() == A.type() ); gemm( A, B, alpha, C, beta, D, flags ); @@ -3439,7 +3439,7 @@ cvTransform( const CvArr* srcarr, CvArr* dstarr, m = _m; } - CV_Assert( dst.depth() == src.depth() && dst.channels() == m.rows ); + CV_Assert( dst.depth() == src.depth(), dst.channels() == m.rows ); cv::transform( src, dst, m ); } @@ -3449,7 +3449,7 @@ cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat ) { cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); - CV_Assert( dst.type() == src.type() && dst.channels() == m.rows-1 ); + CV_Assert( dst.type() == src.type(), dst.channels() == m.rows-1 ); cv::perspectiveTransform( src, dst, m ); } @@ -3459,7 +3459,7 @@ CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale, { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); - CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); + CV_Assert( src1.size == dst.size, src1.type() == dst.type() ); cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst ); } @@ -3469,7 +3469,7 @@ cvCalcCovarMatrix( const CvArr** vecarr, int count, CvArr* covarr, CvArr* avgarr, int flags ) { cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean; - CV_Assert( vecarr != 0 && count >= 1 ); + CV_Assert( vecarr != 0, count >= 1 ); if( avgarr ) mean = mean0 = cv::cvarrToMat(avgarr); @@ -3549,9 +3549,9 @@ cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigen int ecount0 = evals0.cols + evals0.rows - 1; int ecount = evals.cols + evals.rows - 1; - CV_Assert( (evals0.cols == 1 || evals0.rows == 1) && - ecount0 <= ecount && - evects0.cols == evects.cols && + CV_Assert( (evals0.cols == 1 || evals0.rows == 1), + ecount0 <= ecount, + evects0.cols == evects.cols, evects0.rows == ecount0 ); cv::Mat temp = evals0; @@ -3580,12 +3580,12 @@ cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr, int n; if( mean.rows == 1 ) { - CV_Assert(dst.cols <= evects.rows && dst.rows == data.rows); + CV_Assert(dst.cols <= evects.rows, dst.rows == data.rows); n = dst.cols; } else { - CV_Assert(dst.rows <= evects.rows && dst.cols == data.cols); + CV_Assert(dst.rows <= evects.rows, dst.cols == data.cols); n = dst.rows; } pca.eigenvectors = evects.rowRange(0, n); @@ -3611,12 +3611,12 @@ cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr, int n; if( mean.rows == 1 ) { - CV_Assert(data.cols <= evects.rows && dst.rows == data.rows); + CV_Assert(data.cols <= evects.rows, dst.rows == data.rows); n = data.cols; } else { - CV_Assert(data.rows <= evects.rows && dst.cols == data.cols); + CV_Assert(data.rows <= evects.rows, dst.cols == data.cols); n = data.rows; } pca.eigenvectors = evects.rowRange(0, n);