parent
6e3142f04b
commit
d1b4b5f0de
37 changed files with 7314 additions and 5721 deletions
@ -1,290 +1,290 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#if !defined(HAVE_CUDA) |
||||
|
||||
void cv::gpu::transformPoints(const GpuMat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } |
||||
|
||||
void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } |
||||
|
||||
void cv::gpu::solvePnPRansac(const Mat&, const Mat&, const Mat&, const Mat&, Mat&, Mat&, bool, int, float, int, vector<int>*) { throw_nogpu(); } |
||||
|
||||
#else |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
namespace cv { namespace gpu { namespace transform_points
|
||||
{ |
||||
void call(const DevMem2D_<float3> src, const float* rot, const float* transl, DevMem2D_<float3> dst, cudaStream_t stream); |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
void transformPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, cudaStream_t stream) |
||||
{ |
||||
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); |
||||
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); |
||||
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); |
||||
|
||||
// Convert rotation vector into matrix
|
||||
Mat rot; |
||||
Rodrigues(rvec, rot); |
||||
|
||||
dst.create(src.size(), src.type()); |
||||
transform_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), dst, stream); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream) |
||||
{ |
||||
::transformPointsCaller(src, rvec, tvec, dst, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace project_points
|
||||
{ |
||||
void call(const DevMem2D_<float3> src, const float* rot, const float* transl, const float* proj, DevMem2D_<float2> dst, cudaStream_t stream); |
||||
}}} |
||||
|
||||
|
||||
namespace |
||||
{ |
||||
void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, cudaStream_t stream) |
||||
{ |
||||
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); |
||||
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); |
||||
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); |
||||
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); |
||||
CV_Assert(dist_coef.empty()); // Undistortion isn't supported
|
||||
|
||||
// Convert rotation vector into matrix
|
||||
Mat rot; |
||||
Rodrigues(rvec, rot); |
||||
|
||||
dst.create(src.size(), CV_32FC2); |
||||
project_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), camera_mat.ptr<float>(), dst,stream); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream) |
||||
{ |
||||
::projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
|
||||
namespace cv { namespace gpu { namespace solve_pnp_ransac |
||||
{ |
||||
int maxNumIters(); |
||||
|
||||
void computeHypothesisScores( |
||||
const int num_hypotheses, const int num_points, const float* rot_matrices, |
||||
const float3* transl_vectors, const float3* object, const float2* image, |
||||
const float dist_threshold, int* hypothesis_scores); |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
// Selects subset_size random different points from [0, num_points - 1] range
|
||||
void selectRandom(int subset_size, int num_points, vector<int>& subset) |
||||
{ |
||||
subset.resize(subset_size); |
||||
for (int i = 0; i < subset_size; ++i) |
||||
{ |
||||
bool was; |
||||
do |
||||
{ |
||||
subset[i] = rand() % num_points; |
||||
was = false; |
||||
for (int j = 0; j < i; ++j) |
||||
if (subset[j] == subset[i]) |
||||
{ |
||||
was = true; |
||||
break; |
||||
} |
||||
} while (was); |
||||
} |
||||
} |
||||
|
||||
// Computes rotation, translation pair for small subsets if the input data
|
||||
class TransformHypothesesGenerator |
||||
{ |
||||
public: |
||||
TransformHypothesesGenerator(const Mat& object_, const Mat& image_, const Mat& dist_coef_,
|
||||
const Mat& camera_mat_, int num_points_, int subset_size_,
|
||||
Mat rot_matrices_, Mat transl_vectors_) |
||||
: object(&object_), image(&image_), dist_coef(&dist_coef_), camera_mat(&camera_mat_),
|
||||
num_points(num_points_), subset_size(subset_size_), rot_matrices(rot_matrices_),
|
||||
transl_vectors(transl_vectors_) {} |
||||
|
||||
void operator()(const BlockedRange& range) const |
||||
{ |
||||
// Input data for generation of the current hypothesis
|
||||
vector<int> subset_indices(subset_size); |
||||
Mat_<Point3f> object_subset(1, subset_size); |
||||
Mat_<Point2f> image_subset(1, subset_size); |
||||
|
||||
// Current hypothesis data
|
||||
Mat rot_vec(1, 3, CV_64F); |
||||
Mat rot_mat(3, 3, CV_64F); |
||||
Mat transl_vec(1, 3, CV_64F); |
||||
|
||||
for (int iter = range.begin(); iter < range.end(); ++iter) |
||||
{ |
||||
selectRandom(subset_size, num_points, subset_indices); |
||||
for (int i = 0; i < subset_size; ++i) |
||||
{ |
||||
object_subset(0, i) = object->at<Point3f>(subset_indices[i]); |
||||
image_subset(0, i) = image->at<Point2f>(subset_indices[i]); |
||||
} |
||||
|
||||
solvePnP(object_subset, image_subset, *camera_mat, *dist_coef, rot_vec, transl_vec); |
||||
|
||||
// Remember translation vector
|
||||
Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3); |
||||
transl_vec = transl_vec.reshape(0, 1); |
||||
transl_vec.convertTo(transl_vec_, CV_32F); |
||||
|
||||
// Remember rotation matrix
|
||||
Rodrigues(rot_vec, rot_mat); |
||||
Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3); |
||||
rot_mat.convertTo(rot_mat_, CV_32F); |
||||
} |
||||
} |
||||
|
||||
const Mat* object; |
||||
const Mat* image; |
||||
const Mat* dist_coef; |
||||
const Mat* camera_mat; |
||||
int num_points; |
||||
int subset_size; |
||||
|
||||
// Hypotheses storage (global)
|
||||
Mat rot_matrices; |
||||
Mat transl_vectors; |
||||
}; |
||||
} |
||||
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#if !defined(HAVE_CUDA) |
||||
|
||||
void cv::gpu::transformPoints(const GpuMat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } |
||||
|
||||
void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } |
||||
|
||||
void cv::gpu::solvePnPRansac(const Mat&, const Mat&, const Mat&, const Mat&, Mat&, Mat&, bool, int, float, int, vector<int>*) { throw_nogpu(); } |
||||
|
||||
#else |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
namespace cv { namespace gpu { namespace transform_points
|
||||
{ |
||||
void call(const DevMem2D_<float3> src, const float* rot, const float* transl, DevMem2D_<float3> dst, cudaStream_t stream); |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
void transformPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, cudaStream_t stream) |
||||
{ |
||||
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); |
||||
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); |
||||
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); |
||||
|
||||
// Convert rotation vector into matrix
|
||||
Mat rot; |
||||
Rodrigues(rvec, rot); |
||||
|
||||
dst.create(src.size(), src.type()); |
||||
transform_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), dst, stream); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream) |
||||
{ |
||||
::transformPointsCaller(src, rvec, tvec, dst, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
namespace cv { namespace gpu { namespace project_points
|
||||
{ |
||||
void call(const DevMem2D_<float3> src, const float* rot, const float* transl, const float* proj, DevMem2D_<float2> dst, cudaStream_t stream); |
||||
}}} |
||||
|
||||
|
||||
namespace |
||||
{ |
||||
void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, cudaStream_t stream) |
||||
{ |
||||
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); |
||||
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); |
||||
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); |
||||
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); |
||||
CV_Assert(dist_coef.empty()); // Undistortion isn't supported
|
||||
|
||||
// Convert rotation vector into matrix
|
||||
Mat rot; |
||||
Rodrigues(rvec, rot); |
||||
|
||||
dst.create(src.size(), CV_32FC2); |
||||
project_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), camera_mat.ptr<float>(), dst,stream); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream) |
||||
{ |
||||
::projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream)); |
||||
} |
||||
|
||||
|
||||
namespace cv { namespace gpu { namespace solve_pnp_ransac |
||||
{ |
||||
int maxNumIters(); |
||||
|
||||
void computeHypothesisScores( |
||||
const int num_hypotheses, const int num_points, const float* rot_matrices, |
||||
const float3* transl_vectors, const float3* object, const float2* image, |
||||
const float dist_threshold, int* hypothesis_scores); |
||||
}}} |
||||
|
||||
namespace |
||||
{ |
||||
// Selects subset_size random different points from [0, num_points - 1] range
|
||||
void selectRandom(int subset_size, int num_points, vector<int>& subset) |
||||
{ |
||||
subset.resize(subset_size); |
||||
for (int i = 0; i < subset_size; ++i) |
||||
{ |
||||
bool was; |
||||
do |
||||
{ |
||||
subset[i] = rand() % num_points; |
||||
was = false; |
||||
for (int j = 0; j < i; ++j) |
||||
if (subset[j] == subset[i]) |
||||
{ |
||||
was = true; |
||||
break; |
||||
} |
||||
} while (was); |
||||
} |
||||
} |
||||
|
||||
// Computes rotation, translation pair for small subsets if the input data
|
||||
class TransformHypothesesGenerator |
||||
{ |
||||
public: |
||||
TransformHypothesesGenerator(const Mat& object_, const Mat& image_, const Mat& dist_coef_,
|
||||
const Mat& camera_mat_, int num_points_, int subset_size_,
|
||||
Mat rot_matrices_, Mat transl_vectors_) |
||||
: object(&object_), image(&image_), dist_coef(&dist_coef_), camera_mat(&camera_mat_),
|
||||
num_points(num_points_), subset_size(subset_size_), rot_matrices(rot_matrices_),
|
||||
transl_vectors(transl_vectors_) {} |
||||
|
||||
void operator()(const BlockedRange& range) const |
||||
{ |
||||
// Input data for generation of the current hypothesis
|
||||
vector<int> subset_indices(subset_size); |
||||
Mat_<Point3f> object_subset(1, subset_size); |
||||
Mat_<Point2f> image_subset(1, subset_size); |
||||
|
||||
// Current hypothesis data
|
||||
Mat rot_vec(1, 3, CV_64F); |
||||
Mat rot_mat(3, 3, CV_64F); |
||||
Mat transl_vec(1, 3, CV_64F); |
||||
|
||||
for (int iter = range.begin(); iter < range.end(); ++iter) |
||||
{ |
||||
selectRandom(subset_size, num_points, subset_indices); |
||||
for (int i = 0; i < subset_size; ++i) |
||||
{ |
||||
object_subset(0, i) = object->at<Point3f>(subset_indices[i]); |
||||
image_subset(0, i) = image->at<Point2f>(subset_indices[i]); |
||||
} |
||||
|
||||
solvePnP(object_subset, image_subset, *camera_mat, *dist_coef, rot_vec, transl_vec); |
||||
|
||||
// Remember translation vector
|
||||
Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3); |
||||
transl_vec = transl_vec.reshape(0, 1); |
||||
transl_vec.convertTo(transl_vec_, CV_32F); |
||||
|
||||
// Remember rotation matrix
|
||||
Rodrigues(rot_vec, rot_mat); |
||||
Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3); |
||||
rot_mat.convertTo(rot_mat_, CV_32F); |
||||
} |
||||
} |
||||
|
||||
const Mat* object; |
||||
const Mat* image; |
||||
const Mat* dist_coef; |
||||
const Mat* camera_mat; |
||||
int num_points; |
||||
int subset_size; |
||||
|
||||
// Hypotheses storage (global)
|
||||
Mat rot_matrices; |
||||
Mat transl_vectors; |
||||
}; |
||||
} |
||||
|
||||
void cv::gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, |
||||
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess, |
||||
int num_iters, float max_dist, int min_inlier_count,
|
||||
vector<int>* inliers) |
||||
{ |
||||
CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3); |
||||
CV_Assert(image.rows == 1 && image.cols > 0 && image.type() == CV_32FC2); |
||||
CV_Assert(object.cols == image.cols); |
||||
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); |
||||
CV_Assert(!use_extrinsic_guess); // We don't support initial guess for now
|
||||
CV_Assert(num_iters <= solve_pnp_ransac::maxNumIters()); |
||||
|
||||
const int subset_size = 4; |
||||
const int num_points = object.cols; |
||||
CV_Assert(num_points >= subset_size); |
||||
|
||||
// Unapply distortion and intrinsic camera transformations
|
||||
Mat eye_camera_mat = Mat::eye(3, 3, CV_32F); |
||||
Mat empty_dist_coef; |
||||
Mat image_normalized; |
||||
undistortPoints(image, image_normalized, camera_mat, dist_coef, Mat(), eye_camera_mat); |
||||
|
||||
// Hypotheses storage (global)
|
||||
Mat rot_matrices(1, num_iters * 9, CV_32F); |
||||
Mat transl_vectors(1, num_iters * 3, CV_32F); |
||||
|
||||
// Generate set of hypotheses using small subsets of the input data
|
||||
TransformHypothesesGenerator body(object, image_normalized, empty_dist_coef, eye_camera_mat,
|
||||
num_points, subset_size, rot_matrices, transl_vectors); |
||||
parallel_for(BlockedRange(0, num_iters), body); |
||||
|
||||
// Compute scores (i.e. number of inliers) for each hypothesis
|
||||
GpuMat d_object(object); |
||||
GpuMat d_image_normalized(image_normalized); |
||||
GpuMat d_hypothesis_scores(1, num_iters, CV_32S); |
||||
solve_pnp_ransac::computeHypothesisScores( |
||||
num_iters, num_points, rot_matrices.ptr<float>(), transl_vectors.ptr<float3>(), |
||||
d_object.ptr<float3>(), d_image_normalized.ptr<float2>(), max_dist * max_dist,
|
||||
d_hypothesis_scores.ptr<int>()); |
||||
|
||||
// Find the best hypothesis index
|
||||
Point best_idx; |
||||
double best_score; |
||||
minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx); |
||||
int num_inliers = static_cast<int>(best_score); |
||||
|
||||
// Extract the best hypothesis data
|
||||
|
||||
Mat rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3); |
||||
Rodrigues(rot_mat, rvec); |
||||
rvec = rvec.reshape(0, 1); |
||||
|
||||
tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone(); |
||||
tvec = tvec.reshape(0, 1); |
||||
|
||||
// Build vector of inlier indices
|
||||
if (inliers != NULL) |
||||
{ |
||||
inliers->clear(); |
||||
inliers->reserve(num_inliers); |
||||
|
||||
Point3f p, p_transf; |
||||
Point2f p_proj; |
||||
const float* rot = rot_mat.ptr<float>(); |
||||
const float* transl = tvec.ptr<float>(); |
||||
|
||||
for (int i = 0; i < num_points; ++i) |
||||
{ |
||||
p = object.at<Point3f>(0, i); |
||||
p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0]; |
||||
p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1]; |
||||
p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2]; |
||||
p_proj.x = p_transf.x / p_transf.z; |
||||
p_proj.y = p_transf.y / p_transf.z; |
||||
if (norm(p_proj - image_normalized.at<Point2f>(0, i)) < max_dist) |
||||
inliers->push_back(i); |
||||
} |
||||
} |
||||
} |
||||
|
||||
#endif |
||||
|
||||
|
||||
vector<int>* inliers) |
||||
{ |
||||
CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3); |
||||
CV_Assert(image.rows == 1 && image.cols > 0 && image.type() == CV_32FC2); |
||||
CV_Assert(object.cols == image.cols); |
||||
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); |
||||
CV_Assert(!use_extrinsic_guess); // We don't support initial guess for now
|
||||
CV_Assert(num_iters <= solve_pnp_ransac::maxNumIters()); |
||||
|
||||
const int subset_size = 4; |
||||
const int num_points = object.cols; |
||||
CV_Assert(num_points >= subset_size); |
||||
|
||||
// Unapply distortion and intrinsic camera transformations
|
||||
Mat eye_camera_mat = Mat::eye(3, 3, CV_32F); |
||||
Mat empty_dist_coef; |
||||
Mat image_normalized; |
||||
undistortPoints(image, image_normalized, camera_mat, dist_coef, Mat(), eye_camera_mat); |
||||
|
||||
// Hypotheses storage (global)
|
||||
Mat rot_matrices(1, num_iters * 9, CV_32F); |
||||
Mat transl_vectors(1, num_iters * 3, CV_32F); |
||||
|
||||
// Generate set of hypotheses using small subsets of the input data
|
||||
TransformHypothesesGenerator body(object, image_normalized, empty_dist_coef, eye_camera_mat,
|
||||
num_points, subset_size, rot_matrices, transl_vectors); |
||||
parallel_for(BlockedRange(0, num_iters), body); |
||||
|
||||
// Compute scores (i.e. number of inliers) for each hypothesis
|
||||
GpuMat d_object(object); |
||||
GpuMat d_image_normalized(image_normalized); |
||||
GpuMat d_hypothesis_scores(1, num_iters, CV_32S); |
||||
solve_pnp_ransac::computeHypothesisScores( |
||||
num_iters, num_points, rot_matrices.ptr<float>(), transl_vectors.ptr<float3>(), |
||||
d_object.ptr<float3>(), d_image_normalized.ptr<float2>(), max_dist * max_dist,
|
||||
d_hypothesis_scores.ptr<int>()); |
||||
|
||||
// Find the best hypothesis index
|
||||
Point best_idx; |
||||
double best_score; |
||||
minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx); |
||||
int num_inliers = static_cast<int>(best_score); |
||||
|
||||
// Extract the best hypothesis data
|
||||
|
||||
Mat rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3); |
||||
Rodrigues(rot_mat, rvec); |
||||
rvec = rvec.reshape(0, 1); |
||||
|
||||
tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone(); |
||||
tvec = tvec.reshape(0, 1); |
||||
|
||||
// Build vector of inlier indices
|
||||
if (inliers != NULL) |
||||
{ |
||||
inliers->clear(); |
||||
inliers->reserve(num_inliers); |
||||
|
||||
Point3f p, p_transf; |
||||
Point2f p_proj; |
||||
const float* rot = rot_mat.ptr<float>(); |
||||
const float* transl = tvec.ptr<float>(); |
||||
|
||||
for (int i = 0; i < num_points; ++i) |
||||
{ |
||||
p = object.at<Point3f>(0, i); |
||||
p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0]; |
||||
p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1]; |
||||
p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2]; |
||||
p_proj.x = p_transf.x / p_transf.z; |
||||
p_proj.y = p_transf.y / p_transf.z; |
||||
if (norm(p_proj - image_normalized.at<Point2f>(0, i)) < max_dist) |
||||
inliers->push_back(i); |
||||
} |
||||
} |
||||
} |
||||
|
||||
#endif |
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,235 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iostream> |
||||
#include <limits> |
||||
#include "test_precomp.hpp" |
||||
|
||||
#define CHECK(pred, err) if (!(pred)) { \ |
||||
ts->printf(cvtest::TS::CONSOLE, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \
|
||||
ts->set_failed_test_info(err); \
|
||||
return; } |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
struct CV_GpuBitwiseTest: public cvtest::BaseTest |
||||
{ |
||||
CV_GpuBitwiseTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
int rows, cols; |
||||
|
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
int depth_end = double_ok ? CV_64F : CV_32F; |
||||
|
||||
for (int depth = CV_8U; depth <= depth_end; ++depth) |
||||
for (int cn = 1; cn <= 4; ++cn) |
||||
for (int attempt = 0; attempt < 3; ++attempt) |
||||
{ |
||||
rows = 1 + rand() % 100; |
||||
cols = 1 + rand() % 100; |
||||
test_bitwise_not(rows, cols, CV_MAKETYPE(depth, cn)); |
||||
test_bitwise_or(rows, cols, CV_MAKETYPE(depth, cn)); |
||||
test_bitwise_and(rows, cols, CV_MAKETYPE(depth, cn)); |
||||
test_bitwise_xor(rows, cols, CV_MAKETYPE(depth, cn)); |
||||
} |
||||
} |
||||
|
||||
void test_bitwise_not(int rows, int cols, int type) |
||||
{ |
||||
Mat src(rows, cols, type); |
||||
|
||||
RNG rng; |
||||
for (int i = 0; i < src.rows; ++i) |
||||
{ |
||||
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i)); |
||||
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(255)); |
||||
} |
||||
|
||||
Mat dst_gold = ~src; |
||||
|
||||
gpu::GpuMat mask(src.size(), CV_8U); |
||||
mask.setTo(Scalar(1)); |
||||
|
||||
gpu::GpuMat dst; |
||||
gpu::bitwise_not(gpu::GpuMat(src), dst); |
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
Mat dsth(dst); |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
|
||||
dst.setTo(Scalar::all(0)); |
||||
gpu::bitwise_not(gpu::GpuMat(src), dst, mask); |
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
dsth = dst; |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT) |
||||
} |
||||
|
||||
void test_bitwise_or(int rows, int cols, int type) |
||||
{ |
||||
Mat src1(rows, cols, type); |
||||
Mat src2(rows, cols, type); |
||||
|
||||
RNG rng; |
||||
for (int i = 0; i < src1.rows; ++i) |
||||
{ |
||||
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i)); |
||||
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255)); |
||||
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i)); |
||||
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255)); |
||||
} |
||||
|
||||
Mat dst_gold = src1 | src2; |
||||
gpu::GpuMat dst = gpu::GpuMat(src1) | gpu::GpuMat(src2); |
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
Mat dsth(dst); |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT) |
||||
|
||||
Mat mask(src1.size(), CV_8U); |
||||
randu(mask, Scalar(0), Scalar(255)); |
||||
|
||||
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0)); |
||||
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0)); |
||||
bitwise_or(src1, src2, dst_gold2, mask); |
||||
gpu::bitwise_or(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask)); |
||||
|
||||
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
dsth = dst2; |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT) |
||||
} |
||||
|
||||
void test_bitwise_and(int rows, int cols, int type) |
||||
{ |
||||
Mat src1(rows, cols, type); |
||||
Mat src2(rows, cols, type); |
||||
|
||||
RNG rng; |
||||
for (int i = 0; i < src1.rows; ++i) |
||||
{ |
||||
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i)); |
||||
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255)); |
||||
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i)); |
||||
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255)); |
||||
} |
||||
|
||||
Mat dst_gold = src1 & src2; |
||||
|
||||
gpu::GpuMat dst = gpu::GpuMat(src1) & gpu::GpuMat(src2); |
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
Mat dsth(dst); |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT) |
||||
|
||||
|
||||
Mat mask(src1.size(), CV_8U); |
||||
randu(mask, Scalar(0), Scalar(255)); |
||||
|
||||
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0)); |
||||
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0)); |
||||
bitwise_and(src1, src2, dst_gold2, mask); |
||||
gpu::bitwise_and(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask)); |
||||
|
||||
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
dsth = dst2; |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT) |
||||
} |
||||
|
||||
void test_bitwise_xor(int rows, int cols, int type) |
||||
{ |
||||
Mat src1(rows, cols, type); |
||||
Mat src2(rows, cols, type); |
||||
|
||||
RNG rng; |
||||
for (int i = 0; i < src1.rows; ++i) |
||||
{ |
||||
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i)); |
||||
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255)); |
||||
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i)); |
||||
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255)); |
||||
} |
||||
|
||||
Mat dst_gold = src1 ^ src2; |
||||
|
||||
gpu::GpuMat dst = gpu::GpuMat(src1) ^ gpu::GpuMat(src2); |
||||
|
||||
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
Mat dsth(dst); |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT) |
||||
|
||||
|
||||
Mat mask(src1.size(), CV_8U); |
||||
randu(mask, Scalar(0), Scalar(255)); |
||||
|
||||
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0)); |
||||
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0)); |
||||
bitwise_xor(src1, src2, dst_gold2, mask); |
||||
gpu::bitwise_xor(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask)); |
||||
|
||||
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
dsth = dst2; |
||||
for (int i = 0; i < dst_gold.rows; ++i)
|
||||
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT) |
||||
} |
||||
}; |
||||
|
||||
TEST(BitwiseOperations, accuracy) { CV_GpuBitwiseTest test; test.safe_run(); } |
@ -1,100 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
TEST(blendLinear, accuracy_on_8U) |
||||
{ |
||||
RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
Size size(200 + cvtest::randInt(rng) % 1000, |
||||
200 + cvtest::randInt(rng) % 1000); |
||||
for (int cn = 1; cn <= 4; ++cn) |
||||
{ |
||||
Mat img1 = cvtest::randomMat(rng, size, CV_MAKE_TYPE(CV_8U, cn), 0, 255, false); |
||||
Mat img2 = cvtest::randomMat(rng, size, CV_MAKE_TYPE(CV_8U, cn), 0, 255, false); |
||||
Mat weights1 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); |
||||
Mat weights2 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); |
||||
Mat result_gold(size, CV_MAKE_TYPE(CV_8U, cn)); |
||||
for (int y = 0; y < size.height; ++y) |
||||
for (int x = 0; x < size.width * cn; ++x) |
||||
{ |
||||
float w1 = weights1.at<float>(y, x / cn); |
||||
float w2 = weights2.at<float>(y, x / cn); |
||||
result_gold.at<uchar>(y, x) = static_cast<uchar>( |
||||
(img1.at<uchar>(y, x) * w1 + img2.at<uchar>(y, x) * w2) / (w1 + w2 + 1e-5f)); |
||||
} |
||||
GpuMat d_result; |
||||
blendLinear(GpuMat(img1), GpuMat(img2), GpuMat(weights1), GpuMat(weights2), d_result); |
||||
ASSERT_LE(cvtest::norm(result_gold, Mat(d_result), NORM_INF), 1)
|
||||
<< "rows=" << size.height << ", cols=" << size.width << ", cn=" << cn; |
||||
} |
||||
} |
||||
|
||||
TEST(blendLinear, accuracy_on_32F) |
||||
{ |
||||
RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
Size size(200 + cvtest::randInt(rng) % 1000, |
||||
200 + cvtest::randInt(rng) % 1000); |
||||
for (int cn = 1; cn <= 4; ++cn) |
||||
{ |
||||
Mat img1 = cvtest::randomMat(rng, size, CV_MAKE_TYPE(CV_32F, cn), 0, 1, false); |
||||
Mat img2 = cvtest::randomMat(rng, size, CV_MAKE_TYPE(CV_32F, cn), 0, 1, false); |
||||
Mat weights1 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); |
||||
Mat weights2 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); |
||||
Mat result_gold(size, CV_MAKE_TYPE(CV_32F, cn)); |
||||
for (int y = 0; y < size.height; ++y) |
||||
for (int x = 0; x < size.width * cn; ++x) |
||||
{ |
||||
float w1 = weights1.at<float>(y, x / cn); |
||||
float w2 = weights2.at<float>(y, x / cn); |
||||
result_gold.at<float>(y, x) =
|
||||
(img1.at<float>(y, x) * w1 + img2.at<float>(y, x) * w2) / (w1 + w2 + 1e-5f); |
||||
} |
||||
GpuMat d_result; |
||||
blendLinear(GpuMat(img1), GpuMat(img2), GpuMat(weights1), GpuMat(weights2), d_result); |
||||
ASSERT_LE(cvtest::norm(result_gold, Mat(d_result), NORM_INF), 1e-3) |
||||
<< "rows=" << size.height << ", cols=" << size.width << ", cn=" << cn; |
||||
} |
||||
} |
@ -1,522 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include <algorithm> |
||||
#include <iterator> |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace std; |
||||
|
||||
class CV_GpuBruteForceMatcherTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_GpuBruteForceMatcherTest() |
||||
{ |
||||
} |
||||
|
||||
protected: |
||||
virtual void run(int); |
||||
|
||||
void emptyDataTest(); |
||||
void dataTest(int dim); |
||||
|
||||
void generateData(GpuMat& query, GpuMat& train, int dim); |
||||
|
||||
void matchTest(const GpuMat& query, const GpuMat& train); |
||||
void knnMatchTest(const GpuMat& query, const GpuMat& train); |
||||
void radiusMatchTest(const GpuMat& query, const GpuMat& train); |
||||
|
||||
private: |
||||
BruteForceMatcher_GPU< L2<float> > dmatcher; |
||||
|
||||
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
|
||||
static const int countFactor = 4; // do not change it
|
||||
}; |
||||
|
||||
void CV_GpuBruteForceMatcherTest::emptyDataTest() |
||||
{ |
||||
GpuMat queryDescriptors, trainDescriptors, mask; |
||||
vector<GpuMat> trainDescriptorCollection, masks; |
||||
vector<DMatch> matches; |
||||
vector< vector<DMatch> > vmatches; |
||||
|
||||
try |
||||
{ |
||||
dmatcher.match(queryDescriptors, trainDescriptors, matches, mask); |
||||
} |
||||
catch(...) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
try |
||||
{ |
||||
dmatcher.knnMatch(queryDescriptors, trainDescriptors, vmatches, 2, mask); |
||||
} |
||||
catch(...) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
try |
||||
{ |
||||
dmatcher.radiusMatch(queryDescriptors, trainDescriptors, vmatches, 10.f, mask); |
||||
} |
||||
catch(...) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
try |
||||
{ |
||||
dmatcher.add(trainDescriptorCollection); |
||||
} |
||||
catch(...) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
try |
||||
{ |
||||
dmatcher.match(queryDescriptors, matches, masks); |
||||
} |
||||
catch(...) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
try |
||||
{ |
||||
dmatcher.knnMatch(queryDescriptors, vmatches, 2, masks); |
||||
} |
||||
catch(...) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
try |
||||
{ |
||||
dmatcher.radiusMatch( queryDescriptors, vmatches, 10.f, masks ); |
||||
} |
||||
catch(...) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
} |
||||
|
||||
void CV_GpuBruteForceMatcherTest::generateData( GpuMat& queryGPU, GpuMat& trainGPU, int dim ) |
||||
{ |
||||
Mat query, train; |
||||
RNG& rng = ts->get_rng(); |
||||
|
||||
// Generate query descriptors randomly.
|
||||
// Descriptor vector elements are integer values.
|
||||
Mat buf( queryDescCount, dim, CV_32SC1 ); |
||||
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) ); |
||||
buf.convertTo( query, CV_32FC1 ); |
||||
|
||||
// Generate train decriptors as follows:
|
||||
// copy each query descriptor to train set countFactor times
|
||||
// and perturb some one element of the copied descriptors in
|
||||
// in ascending order. General boundaries of the perturbation
|
||||
// are (0.f, 1.f).
|
||||
train.create( query.rows*countFactor, query.cols, CV_32FC1 ); |
||||
float step = 1.f / countFactor; |
||||
for( int qIdx = 0; qIdx < query.rows; qIdx++ ) |
||||
{ |
||||
Mat queryDescriptor = query.row(qIdx); |
||||
for( int c = 0; c < countFactor; c++ ) |
||||
{ |
||||
int tIdx = qIdx * countFactor + c; |
||||
Mat trainDescriptor = train.row(tIdx); |
||||
queryDescriptor.copyTo( trainDescriptor ); |
||||
int elem = rng(dim); |
||||
float diff = rng.uniform( step*c, step*(c+1) ); |
||||
trainDescriptor.at<float>(0, elem) += diff; |
||||
} |
||||
} |
||||
|
||||
queryGPU.upload(query); |
||||
trainGPU.upload(train); |
||||
} |
||||
|
||||
void CV_GpuBruteForceMatcherTest::matchTest( const GpuMat& query, const GpuMat& train ) |
||||
{ |
||||
dmatcher.clear(); |
||||
|
||||
// test const version of match()
|
||||
{ |
||||
vector<DMatch> matches; |
||||
dmatcher.match( query, train, matches ); |
||||
|
||||
if( (int)matches.size() != queryDescCount ) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n"); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
else |
||||
{ |
||||
int badCount = 0; |
||||
for( size_t i = 0; i < matches.size(); i++ ) |
||||
{ |
||||
DMatch match = matches[i]; |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) |
||||
badCount++; |
||||
} |
||||
if (badCount > 0) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n", |
||||
(float)badCount/(float)queryDescCount ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// test version of match() with add()
|
||||
{ |
||||
vector<DMatch> matches; |
||||
// make add() twice to test such case
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) ); |
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) ); |
||||
// prepare masks (make first nearest match illegal)
|
||||
vector<GpuMat> masks(2); |
||||
for(int mi = 0; mi < 2; mi++ ) |
||||
{ |
||||
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); |
||||
for( int di = 0; di < queryDescCount/2; di++ ) |
||||
masks[mi].col(di*countFactor).setTo(Scalar::all(0)); |
||||
} |
||||
|
||||
dmatcher.match( query, matches, masks ); |
||||
|
||||
if( (int)matches.size() != queryDescCount ) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n"); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
else |
||||
{ |
||||
int badCount = 0; |
||||
for( size_t i = 0; i < matches.size(); i++ ) |
||||
{ |
||||
DMatch match = matches[i]; |
||||
int shift = dmatcher.isMaskSupported() ? 1 : 0; |
||||
{ |
||||
if( i < queryDescCount/2 ) |
||||
{ |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) ) |
||||
badCount++; |
||||
} |
||||
else |
||||
{ |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) ) |
||||
badCount++; |
||||
} |
||||
} |
||||
} |
||||
if (badCount > 0) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n", |
||||
(float)badCount/(float)queryDescCount ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void CV_GpuBruteForceMatcherTest::knnMatchTest( const GpuMat& query, const GpuMat& train ) |
||||
{ |
||||
dmatcher.clear(); |
||||
|
||||
// test const version of knnMatch()
|
||||
{ |
||||
const int knn = 3; |
||||
|
||||
vector< vector<DMatch> > matches; |
||||
dmatcher.knnMatch( query, train, matches, knn ); |
||||
|
||||
if( (int)matches.size() != queryDescCount ) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n"); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
else |
||||
{ |
||||
int badCount = 0; |
||||
for( size_t i = 0; i < matches.size(); i++ ) |
||||
{ |
||||
if( (int)matches[i].size() != knn ) |
||||
badCount++; |
||||
else |
||||
{ |
||||
int localBadCount = 0; |
||||
for( int k = 0; k < knn; k++ ) |
||||
{ |
||||
DMatch match = matches[i][k]; |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) ) |
||||
localBadCount++; |
||||
} |
||||
badCount += localBadCount > 0 ? 1 : 0; |
||||
} |
||||
} |
||||
if (badCount > 0) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n", |
||||
(float)badCount/(float)queryDescCount ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// test version of knnMatch() with add()
|
||||
{ |
||||
const int knn = 2; |
||||
vector<vector<DMatch> > matches; |
||||
// make add() twice to test such case
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) ); |
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) ); |
||||
// prepare masks (make first nearest match illegal)
|
||||
vector<GpuMat> masks(2); |
||||
for(int mi = 0; mi < 2; mi++ ) |
||||
{ |
||||
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); |
||||
for( int di = 0; di < queryDescCount/2; di++ ) |
||||
masks[mi].col(di*countFactor).setTo(Scalar::all(0)); |
||||
} |
||||
|
||||
dmatcher.knnMatch( query, matches, knn, masks ); |
||||
|
||||
if( (int)matches.size() != queryDescCount ) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n"); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
else |
||||
{ |
||||
int badCount = 0; |
||||
int shift = dmatcher.isMaskSupported() ? 1 : 0; |
||||
for( size_t i = 0; i < matches.size(); i++ ) |
||||
{ |
||||
if( (int)matches[i].size() != knn ) |
||||
badCount++; |
||||
else |
||||
{ |
||||
int localBadCount = 0; |
||||
for( int k = 0; k < knn; k++ ) |
||||
{ |
||||
DMatch match = matches[i][k]; |
||||
{ |
||||
if( i < queryDescCount/2 ) |
||||
{ |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || |
||||
(match.imgIdx != 0) ) |
||||
localBadCount++; |
||||
} |
||||
else |
||||
{ |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || |
||||
(match.imgIdx != 1) ) |
||||
localBadCount++; |
||||
} |
||||
} |
||||
} |
||||
badCount += localBadCount > 0 ? 1 : 0; |
||||
} |
||||
} |
||||
if (badCount > 0) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n", |
||||
(float)badCount/(float)queryDescCount ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void CV_GpuBruteForceMatcherTest::radiusMatchTest( const GpuMat& query, const GpuMat& train ) |
||||
{ |
||||
bool atomics_ok = TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS); |
||||
if (!atomics_ok) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "\nCode and device atomics support is required for radiusMatch (CC >= 1.1)"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
dmatcher.clear(); |
||||
// test const version of match()
|
||||
{ |
||||
const float radius = 1.f/countFactor; |
||||
vector< vector<DMatch> > matches; |
||||
dmatcher.radiusMatch( query, train, matches, radius ); |
||||
|
||||
if( (int)matches.size() != queryDescCount ) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
else |
||||
{ |
||||
int badCount = 0; |
||||
for( size_t i = 0; i < matches.size(); i++ ) |
||||
{ |
||||
if( (int)matches[i].size() != 1 ) |
||||
badCount++; |
||||
else |
||||
{ |
||||
DMatch match = matches[i][0]; |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) |
||||
badCount++; |
||||
} |
||||
} |
||||
if (badCount > 0) |
||||
{ |
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n", |
||||
(float)badCount/(float)queryDescCount ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// test version of match() with add()
|
||||
{ |
||||
int n = 3; |
||||
const float radius = 1.f/countFactor * n; |
||||
vector< vector<DMatch> > matches; |
||||
// make add() twice to test such case
|
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) ); |
||||
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) ); |
||||
// prepare masks (make first nearest match illegal)
|
||||
vector<GpuMat> masks(2); |
||||
for(int mi = 0; mi < 2; mi++ ) |
||||
{ |
||||
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); |
||||
for( int di = 0; di < queryDescCount/2; di++ ) |
||||
masks[mi].col(di*countFactor).setTo(Scalar::all(0)); |
||||
} |
||||
|
||||
dmatcher.radiusMatch( query, matches, radius, masks ); |
||||
|
||||
int curRes = cvtest::TS::OK; |
||||
if( (int)matches.size() != queryDescCount ) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||
} |
||||
|
||||
int badCount = 0; |
||||
int shift = dmatcher.isMaskSupported() ? 1 : 0; |
||||
int needMatchCount = dmatcher.isMaskSupported() ? n-1 : n; |
||||
for( size_t i = 0; i < matches.size(); i++ ) |
||||
{ |
||||
if( (int)matches[i].size() != needMatchCount ) |
||||
badCount++; |
||||
else |
||||
{ |
||||
int localBadCount = 0; |
||||
for( int k = 0; k < needMatchCount; k++ ) |
||||
{ |
||||
DMatch match = matches[i][k]; |
||||
{ |
||||
if( i < queryDescCount/2 ) |
||||
{ |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || |
||||
(match.imgIdx != 0) ) |
||||
localBadCount++; |
||||
} |
||||
else |
||||
{ |
||||
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || |
||||
(match.imgIdx != 1) ) |
||||
localBadCount++; |
||||
} |
||||
} |
||||
} |
||||
badCount += localBadCount > 0 ? 1 : 0; |
||||
} |
||||
} |
||||
|
||||
if (badCount > 0) |
||||
{ |
||||
curRes = cvtest::TS::FAIL_INVALID_OUTPUT; |
||||
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n", |
||||
(float)badCount/(float)queryDescCount ); |
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void CV_GpuBruteForceMatcherTest::dataTest(int dim) |
||||
{ |
||||
GpuMat query, train; |
||||
generateData(query, train, dim); |
||||
|
||||
matchTest(query, train); |
||||
knnMatchTest(query, train); |
||||
radiusMatchTest(query, train); |
||||
|
||||
dmatcher.clear(); |
||||
} |
||||
|
||||
void CV_GpuBruteForceMatcherTest::run(int) |
||||
{ |
||||
emptyDataTest(); |
||||
|
||||
dataTest(50); |
||||
dataTest(64); |
||||
dataTest(100); |
||||
dataTest(128); |
||||
dataTest(200); |
||||
dataTest(256); |
||||
dataTest(300); |
||||
} |
||||
|
||||
TEST(BruteForceMatcher, accuracy) { CV_GpuBruteForceMatcherTest test; test.safe_run(); } |
@ -1,135 +1,363 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace cvtest; |
||||
|
||||
TEST(projectPoints, accuracy) |
||||
{ |
||||
RNG& rng = TS::ptr()->get_rng(); |
||||
Mat src = randomMat(rng, Size(1000, 1), CV_32FC3, 0, 10, false); |
||||
Mat rvec = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false); |
||||
Mat tvec = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false); |
||||
Mat camera_mat = randomMat(rng, Size(3, 3), CV_32F, 0, 1, false); |
||||
camera_mat.at<float>(0, 1) = 0.f; |
||||
camera_mat.at<float>(1, 0) = 0.f; |
||||
camera_mat.at<float>(2, 0) = 0.f; |
||||
camera_mat.at<float>(2, 1) = 0.f; |
||||
|
||||
vector<Point2f> dst; |
||||
projectPoints(src, rvec, tvec, camera_mat, Mat(1, 8, CV_32F, Scalar::all(0)), dst); |
||||
|
||||
GpuMat d_dst; |
||||
projectPoints(GpuMat(src), rvec, tvec, camera_mat, Mat(), d_dst); |
||||
|
||||
ASSERT_EQ(dst.size(), (size_t)d_dst.cols); |
||||
ASSERT_EQ(1, d_dst.rows); |
||||
ASSERT_EQ(CV_32FC2, d_dst.type()); |
||||
|
||||
Mat h_dst(d_dst); |
||||
for (size_t i = 0; i < dst.size(); ++i) |
||||
{ |
||||
Point2f res_gold = dst[i]; |
||||
Point2f res_actual = h_dst.at<Point2f>(0, i); |
||||
Point2f err = res_actual - res_gold; |
||||
ASSERT_LT(err.dot(err) / res_gold.dot(res_gold), 1e-3f); |
||||
} |
||||
} |
||||
|
||||
|
||||
TEST(transformPoints, accuracy) |
||||
{ |
||||
RNG& rng = TS::ptr()->get_rng(); |
||||
Mat src = randomMat(rng, Size(1000, 1), CV_32FC3, 0, 10, false); |
||||
Mat rvec = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false); |
||||
Mat tvec = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false); |
||||
|
||||
GpuMat d_dst; |
||||
transformPoints(GpuMat(src), rvec, tvec, d_dst); |
||||
ASSERT_TRUE(src.size() == d_dst.size()); |
||||
ASSERT_EQ(src.type(), d_dst.type()); |
||||
|
||||
Mat h_dst(d_dst); |
||||
Mat rot; |
||||
Rodrigues(rvec, rot); |
||||
for (int i = 0; i < h_dst.cols; ++i) |
||||
{ |
||||
Point3f p = src.at<Point3f>(0, i); |
||||
Point3f res_gold( |
||||
rot.at<float>(0, 0) * p.x + rot.at<float>(0, 1) * p.y + rot.at<float>(0, 2) * p.z + tvec.at<float>(0, 0), |
||||
rot.at<float>(1, 0) * p.x + rot.at<float>(1, 1) * p.y + rot.at<float>(1, 2) * p.z + tvec.at<float>(0, 1), |
||||
rot.at<float>(2, 0) * p.x + rot.at<float>(2, 1) * p.y + rot.at<float>(2, 2) * p.z + tvec.at<float>(0, 2)); |
||||
Point3f res_actual = h_dst.at<Point3f>(0, i); |
||||
Point3f err = res_actual - res_gold; |
||||
ASSERT_LT(err.dot(err) / res_gold.dot(res_gold), 1e-3f); |
||||
} |
||||
} |
||||
|
||||
|
||||
TEST(solvePnPRansac, accuracy) |
||||
{ |
||||
RNG& rng = TS::ptr()->get_rng(); |
||||
|
||||
const int num_points = 5000; |
||||
Mat object = randomMat(rng, Size(num_points, 1), CV_32FC3, 0, 100, false); |
||||
Mat camera_mat = randomMat(rng, Size(3, 3), CV_32F, 0.5, 1, false); |
||||
camera_mat.at<float>(0, 1) = 0.f; |
||||
camera_mat.at<float>(1, 0) = 0.f; |
||||
camera_mat.at<float>(2, 0) = 0.f; |
||||
camera_mat.at<float>(2, 1) = 0.f; |
||||
|
||||
Mat rvec_gold = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false); |
||||
Mat tvec_gold = randomMat(rng, Size(3, 1), CV_32F, 0, 1, false); |
||||
|
||||
vector<Point2f> image_vec; |
||||
projectPoints(object, rvec_gold, tvec_gold, camera_mat, Mat(1, 8, CV_32F, Scalar::all(0)), image_vec); |
||||
Mat image(1, image_vec.size(), CV_32FC2, &image_vec[0]); |
||||
|
||||
Mat rvec, tvec; |
||||
vector<int> inliers; |
||||
gpu::solvePnPRansac(object, image, camera_mat, Mat(1, 8, CV_32F, Scalar::all(0)), rvec, tvec, false, 200, 2.f, 100, &inliers); |
||||
|
||||
ASSERT_LE(norm(rvec - rvec_gold), 1e-3f); |
||||
ASSERT_LE(norm(tvec - tvec_gold), 1e-3f); |
||||
} |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
struct StereoTest : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
static cv::Mat img_l; |
||||
static cv::Mat img_r; |
||||
static cv::Mat img_template; |
||||
|
||||
static void TearDownTestCase()
|
||||
{ |
||||
img_l.release(); |
||||
img_r.release(); |
||||
img_template.release(); |
||||
} |
||||
|
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
} |
||||
}; |
||||
|
||||
cv::Mat StereoTest::img_l; |
||||
cv::Mat StereoTest::img_r; |
||||
cv::Mat StereoTest::img_template; |
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// BlockMatching
|
||||
|
||||
struct StereoBlockMatching : StereoTest |
||||
{ |
||||
static void SetUpTestCase()
|
||||
{ |
||||
img_l = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
img_r = readImage("stereobm/aloe-R.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
img_template = readImage("stereobm/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(StereoBlockMatching, Regression)
|
||||
{ |
||||
ASSERT_TRUE(!img_l.empty() && !img_r.empty() && !img_template.empty()); |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
|
||||
cv::gpu::GpuMat disp; |
||||
cv::gpu::StereoBM_GPU bm(0, 128, 19); |
||||
|
||||
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp); |
||||
|
||||
disp.convertTo(disp, img_template.type()); |
||||
|
||||
ASSERT_EQ(img_template.size(), disp.size()); |
||||
double norm = cv::norm(img_template, (cv::Mat)disp, cv::NORM_INF); |
||||
ASSERT_EQ(0.0, norm); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBlockMatching, testing::ValuesIn(devices())); |
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// BeliefPropagation
|
||||
|
||||
struct StereoBeliefPropagation : StereoTest |
||||
{ |
||||
static void SetUpTestCase()
|
||||
{ |
||||
img_l = readImage("stereobp/aloe-L.png"); |
||||
img_r = readImage("stereobp/aloe-R.png"); |
||||
img_template = readImage("stereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(StereoBeliefPropagation, Regression)
|
||||
{ |
||||
ASSERT_TRUE(!img_l.empty() && !img_r.empty() && !img_template.empty()); |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
|
||||
cv::gpu::GpuMat disp; |
||||
cv::gpu::StereoBeliefPropagation bpm(64, 8, 2, 25, 0.1f, 15, 1, CV_16S); |
||||
|
||||
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp); |
||||
|
||||
disp.convertTo(disp, img_template.type()); |
||||
|
||||
ASSERT_EQ(img_template.size(), disp.size()); |
||||
double norm = cv::norm(img_template, (cv::Mat)disp, cv::NORM_INF); |
||||
ASSERT_EQ(0.0, norm); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBeliefPropagation, testing::ValuesIn(devices())); |
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// ConstantSpaceBP
|
||||
|
||||
struct StereoConstantSpaceBP : StereoTest |
||||
{ |
||||
static void SetUpTestCase()
|
||||
{ |
||||
img_l = readImage("csstereobp/aloe-L.png"); |
||||
img_r = readImage("csstereobp/aloe-R.png"); |
||||
} |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
StereoTest::SetUp(); |
||||
|
||||
if (supportFeature(GetParam(), cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
img_template = readImage("csstereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
else |
||||
img_template = readImage("csstereobp/aloe-disp_CC1X.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(StereoConstantSpaceBP, Regression)
|
||||
{ |
||||
ASSERT_TRUE(!img_l.empty() && !img_r.empty() && !img_template.empty()); |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
|
||||
cv::gpu::GpuMat disp; |
||||
cv::gpu::StereoConstantSpaceBP bpm(128, 16, 4, 4); |
||||
|
||||
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp); |
||||
|
||||
disp.convertTo(disp, img_template.type()); |
||||
|
||||
ASSERT_EQ(img_template.size(), disp.size()); |
||||
double norm = cv::norm(img_template, (cv::Mat)disp, cv::NORM_INF); |
||||
ASSERT_EQ(0.0, norm); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, StereoConstantSpaceBP, testing::ValuesIn(devices())); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// projectPoints
|
||||
|
||||
struct ProjectPoints : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::Mat src; |
||||
cv::Mat rvec; |
||||
cv::Mat tvec; |
||||
cv::Mat camera_mat; |
||||
|
||||
std::vector<cv::Point2f> dst_gold; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false); |
||||
rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); |
||||
tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); |
||||
camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0, 1, false); |
||||
camera_mat.at<float>(0, 1) = 0.f; |
||||
camera_mat.at<float>(1, 0) = 0.f; |
||||
camera_mat.at<float>(2, 0) = 0.f; |
||||
camera_mat.at<float>(2, 1) = 0.f; |
||||
|
||||
cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(ProjectPoints, Accuracy)
|
||||
{ |
||||
PRINT_PARAM(devInfo); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
ASSERT_NO_THROW(
|
||||
cv::gpu::GpuMat d_dst; |
||||
|
||||
cv::gpu::projectPoints(cv::gpu::GpuMat(src), rvec, tvec, camera_mat, cv::Mat(), d_dst); |
||||
|
||||
d_dst.download(dst); |
||||
); |
||||
|
||||
ASSERT_EQ(dst_gold.size(), dst.cols); |
||||
ASSERT_EQ(1, dst.rows); |
||||
ASSERT_EQ(CV_32FC2, dst.type()); |
||||
|
||||
for (size_t i = 0; i < dst_gold.size(); ++i) |
||||
{ |
||||
cv::Point2f res_gold = dst_gold[i]; |
||||
cv::Point2f res_actual = dst.at<cv::Point2f>(0, i); |
||||
cv::Point2f err = res_actual - res_gold; |
||||
|
||||
ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, ProjectPoints, testing::ValuesIn(devices())); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// transformPoints
|
||||
|
||||
struct TransformPoints : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::Mat src; |
||||
cv::Mat rvec; |
||||
cv::Mat tvec; |
||||
cv::Mat rot; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false); |
||||
rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); |
||||
tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); |
||||
|
||||
cv::Rodrigues(rvec, rot); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(TransformPoints, Accuracy) |
||||
{ |
||||
PRINT_PARAM(devInfo); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat d_dst; |
||||
|
||||
cv::gpu::transformPoints(cv::gpu::GpuMat(src), rvec, tvec, d_dst); |
||||
|
||||
d_dst.download(dst); |
||||
); |
||||
|
||||
ASSERT_EQ(src.size(), dst.size()); |
||||
ASSERT_EQ(src.type(), dst.type()); |
||||
|
||||
for (int i = 0; i < dst.cols; ++i) |
||||
{ |
||||
cv::Point3f p = src.at<cv::Point3f>(0, i); |
||||
cv::Point3f res_gold( |
||||
rot.at<float>(0, 0) * p.x + rot.at<float>(0, 1) * p.y + rot.at<float>(0, 2) * p.z + tvec.at<float>(0, 0), |
||||
rot.at<float>(1, 0) * p.x + rot.at<float>(1, 1) * p.y + rot.at<float>(1, 2) * p.z + tvec.at<float>(0, 1), |
||||
rot.at<float>(2, 0) * p.x + rot.at<float>(2, 1) * p.y + rot.at<float>(2, 2) * p.z + tvec.at<float>(0, 2)); |
||||
cv::Point3f res_actual = dst.at<cv::Point3f>(0, i); |
||||
cv::Point3f err = res_actual - res_gold; |
||||
|
||||
ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, TransformPoints, testing::ValuesIn(devices())); |
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// solvePnPRansac
|
||||
|
||||
struct SolvePnPRansac : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
static const int num_points = 5000; |
||||
|
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::Mat object; |
||||
cv::Mat camera_mat; |
||||
std::vector<cv::Point2f> image_vec; |
||||
|
||||
cv::Mat rvec_gold; |
||||
cv::Mat tvec_gold; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
object = cvtest::randomMat(rng, cv::Size(num_points, 1), CV_32FC3, 0, 100, false); |
||||
camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0.5, 1, false); |
||||
camera_mat.at<float>(0, 1) = 0.f; |
||||
camera_mat.at<float>(1, 0) = 0.f; |
||||
camera_mat.at<float>(2, 0) = 0.f; |
||||
camera_mat.at<float>(2, 1) = 0.f; |
||||
|
||||
rvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); |
||||
tvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); |
||||
|
||||
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(SolvePnPRansac, Accuracy) |
||||
{ |
||||
PRINT_PARAM(devInfo); |
||||
|
||||
cv::Mat rvec, tvec; |
||||
std::vector<int> inliers; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::solvePnPRansac(object, cv::Mat(1, image_vec.size(), CV_32FC2, &image_vec[0]), camera_mat,
|
||||
cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), rvec, tvec, false, 200, 2.f, 100, &inliers); |
||||
); |
||||
|
||||
ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3f); |
||||
ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3f); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, SolvePnPRansac, testing::ValuesIn(devices())); |
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
@ -1,399 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace std; |
||||
|
||||
struct CV_GpuMulSpectrumsTest: cvtest::BaseTest |
||||
{ |
||||
CV_GpuMulSpectrumsTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
test(0); |
||||
testConj(0); |
||||
testScaled(0); |
||||
testScaledConj(0); |
||||
test(DFT_ROWS); |
||||
testConj(DFT_ROWS); |
||||
testScaled(DFT_ROWS); |
||||
testScaledConj(DFT_ROWS); |
||||
} |
||||
|
||||
void gen(int cols, int rows, Mat& mat) |
||||
{ |
||||
RNG rng; |
||||
mat.create(rows, cols, CV_32FC2); |
||||
rng.fill(mat, RNG::UNIFORM, Scalar::all(0.f), Scalar::all(10.f)); |
||||
} |
||||
|
||||
bool cmp(const Mat& gold, const Mat& mine, float max_err=1e-3f) |
||||
{ |
||||
if (gold.size() != mine.size()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d d%, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
if (gold.type() != mine.type()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad types: gold=%d, mine=%d\n", gold.type(), mine.type()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
for (int i = 0; i < gold.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < gold.cols * 2; ++j) |
||||
{ |
||||
float gold_ = gold.at<float>(i, j); |
||||
float mine_ = mine.at<float>(i, j); |
||||
if (fabs(gold_ - mine_) > max_err) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j, i, gold_, mine_); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
bool cmpScaled(const Mat& gold, const Mat& mine, float scale, float max_err=1e-3f) |
||||
{ |
||||
if (gold.size() != mine.size()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d d%, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
if (gold.type() != mine.type()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad types: gold=%d, mine=%d\n", gold.type(), mine.type()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
for (int i = 0; i < gold.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < gold.cols * 2; ++j) |
||||
{ |
||||
float gold_ = gold.at<float>(i, j) * scale; |
||||
float mine_ = mine.at<float>(i, j); |
||||
if (fabs(gold_ - mine_) > max_err) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j, i, gold_, mine_); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
void test(int flags) |
||||
{ |
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; |
||||
|
||||
Mat a, b; |
||||
gen(cols, rows, a); |
||||
gen(cols, rows, b); |
||||
|
||||
Mat c_gold; |
||||
mulSpectrums(a, b, c_gold, flags, false); |
||||
|
||||
GpuMat d_c; |
||||
mulSpectrums(GpuMat(a), GpuMat(b), d_c, flags, false); |
||||
|
||||
if (!cmp(c_gold, Mat(d_c))) |
||||
ts->printf(cvtest::TS::CONSOLE, "test failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags); |
||||
} |
||||
|
||||
void testConj(int flags) |
||||
{ |
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; |
||||
|
||||
Mat a, b; |
||||
gen(cols, rows, a); |
||||
gen(cols, rows, b); |
||||
|
||||
Mat c_gold; |
||||
mulSpectrums(a, b, c_gold, flags, true); |
||||
|
||||
GpuMat d_c; |
||||
mulSpectrums(GpuMat(a), GpuMat(b), d_c, flags, true); |
||||
|
||||
if (!cmp(c_gold, Mat(d_c))) |
||||
ts->printf(cvtest::TS::CONSOLE, "testConj failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags); |
||||
} |
||||
|
||||
void testScaled(int flags) |
||||
{ |
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; |
||||
|
||||
Mat a, b; |
||||
gen(cols, rows, a); |
||||
gen(cols, rows, b); |
||||
float scale = 1.f / a.size().area(); |
||||
|
||||
Mat c_gold; |
||||
mulSpectrums(a, b, c_gold, flags, false); |
||||
|
||||
GpuMat d_c; |
||||
mulAndScaleSpectrums(GpuMat(a), GpuMat(b), d_c, flags, scale, false); |
||||
|
||||
if (!cmpScaled(c_gold, Mat(d_c), scale)) |
||||
ts->printf(cvtest::TS::CONSOLE, "testScaled failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags); |
||||
} |
||||
|
||||
void testScaledConj(int flags) |
||||
{ |
||||
int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; |
||||
|
||||
Mat a, b; |
||||
gen(cols, rows, a); |
||||
gen(cols, rows, b); |
||||
float scale = 1.f / a.size().area(); |
||||
|
||||
Mat c_gold; |
||||
mulSpectrums(a, b, c_gold, flags, true); |
||||
|
||||
GpuMat d_c; |
||||
mulAndScaleSpectrums(GpuMat(a), GpuMat(b), d_c, flags, scale, true); |
||||
|
||||
if (!cmpScaled(c_gold, Mat(d_c), scale)) |
||||
ts->printf(cvtest::TS::CONSOLE, "testScaledConj failed: cols=%d, rows=%d, flags=%D\n", cols, rows, flags); |
||||
} |
||||
} CV_GpuMulSpectrumsTest_inst; |
||||
|
||||
|
||||
struct CV_GpuDftTest: cvtest::BaseTest |
||||
{ |
||||
CV_GpuDftTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
srand(0); |
||||
int cols = 2 + rand() % 100, rows = 2 + rand() % 100; |
||||
|
||||
for (int i = 0; i < 2; ++i) |
||||
{ |
||||
bool inplace = i != 0; |
||||
testC2C("no flags", cols, rows, 0, inplace); |
||||
testC2C("no flags 0 1", cols, rows + 1, 0, inplace); |
||||
testC2C("no flags 1 0", cols, rows + 1, 0, inplace); |
||||
testC2C("no flags 1 1", cols + 1, rows, 0, inplace); |
||||
testC2C("DFT_INVERSE", cols, rows, DFT_INVERSE, inplace); |
||||
testC2C("DFT_ROWS", cols, rows, DFT_ROWS, inplace); |
||||
testC2C("single col", 1, rows, 0, inplace); |
||||
testC2C("single row", cols, 1, 0, inplace); |
||||
testC2C("single col inversed", 1, rows, DFT_INVERSE, inplace); |
||||
testC2C("single row inversed", cols, 1, DFT_INVERSE, inplace); |
||||
testC2C("single row DFT_ROWS", cols, 1, DFT_ROWS, inplace); |
||||
testC2C("size 1 2", 1, 2, 0, inplace); |
||||
testC2C("size 2 1", 2, 1, 0, inplace); |
||||
} |
||||
|
||||
testR2CThenC2R("sanity", cols, rows); |
||||
testR2CThenC2R("sanity 0 1", cols, rows + 1); |
||||
testR2CThenC2R("sanity 1 0", cols + 1, rows); |
||||
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1); |
||||
testR2CThenC2R("single col", 1, rows); |
||||
testR2CThenC2R("single col 1", 1, rows + 1); |
||||
testR2CThenC2R("single row", cols, 1); |
||||
testR2CThenC2R("single row 1", cols + 1, 1); |
||||
|
||||
testR2CThenC2R("sanity", cols, rows, true); |
||||
testR2CThenC2R("sanity 0 1", cols, rows + 1, true); |
||||
testR2CThenC2R("sanity 1 0", cols + 1, rows, true); |
||||
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true); |
||||
testR2CThenC2R("single row", cols, 1, true); |
||||
testR2CThenC2R("single row 1", cols + 1, 1, true); |
||||
} |
||||
|
||||
void gen(int cols, int rows, int cn, Mat& mat) |
||||
{ |
||||
RNG rng(1); |
||||
mat.create(rows, cols, CV_MAKETYPE(CV_32F, cn)); |
||||
rng.fill(mat, RNG::UNIFORM, Scalar::all(0.f), Scalar::all(10.f)); |
||||
} |
||||
|
||||
bool cmp(const Mat& gold, const Mat& mine, float max_err=1e-3f) |
||||
{ |
||||
if (gold.size() != mine.size()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d %d, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
if (gold.depth() != mine.depth()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad depth: gold=%d, mine=%d\n", gold.depth(), mine.depth()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
if (gold.channels() != mine.channels()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad channel count: gold=%d, mine=%d\n", gold.channels(), mine.channels()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
for (int i = 0; i < gold.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < gold.cols * gold.channels(); ++j) |
||||
{ |
||||
float gold_ = gold.at<float>(i, j); |
||||
float mine_ = mine.at<float>(i, j); |
||||
if (fabs(gold_ - mine_) > max_err) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j / gold.channels(), i, gold_, mine_); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace=false) |
||||
{ |
||||
Mat a; |
||||
gen(cols, rows, 2, a); |
||||
|
||||
Mat b_gold; |
||||
dft(a, b_gold, flags); |
||||
|
||||
GpuMat d_b; |
||||
GpuMat d_b_data; |
||||
if (inplace) |
||||
{ |
||||
d_b_data.create(1, a.size().area(), CV_32FC2); |
||||
d_b = GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); |
||||
} |
||||
|
||||
dft(GpuMat(a), d_b, Size(cols, rows), flags); |
||||
|
||||
bool ok = true; |
||||
if (ok && inplace && d_b.ptr() != d_b_data.ptr()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done\n"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
ok = false; |
||||
} |
||||
if (ok && d_b.depth() != CV_32F) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad depth: %d\n", d_b.depth()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
ok = false; |
||||
} |
||||
if (ok && d_b.channels() != 2) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad channel count: %d\n", d_b.channels()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
ok = false; |
||||
} |
||||
if (ok) ok = cmp(b_gold, Mat(d_b), rows * cols * 1e-4f); |
||||
if (!ok)
|
||||
ts->printf(cvtest::TS::CONSOLE, "testC2C failed: hint=%s, cols=%d, rows=%d, flags=%d, inplace=%d\n",
|
||||
hint.c_str(), cols, rows, flags, inplace); |
||||
} |
||||
|
||||
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace=false) |
||||
{ |
||||
Mat a; |
||||
gen(cols, rows, 1, a); |
||||
|
||||
bool ok = true; |
||||
|
||||
GpuMat d_b, d_c; |
||||
GpuMat d_b_data, d_c_data; |
||||
if (inplace) |
||||
{ |
||||
if (a.cols == 1) |
||||
{ |
||||
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2); |
||||
d_b = GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); |
||||
} |
||||
else |
||||
{ |
||||
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2); |
||||
d_b = GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize()); |
||||
} |
||||
d_c_data.create(1, a.size().area(), CV_32F); |
||||
d_c = GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize()); |
||||
} |
||||
|
||||
dft(GpuMat(a), d_b, Size(cols, rows), 0); |
||||
dft(d_b, d_c, Size(cols, rows), DFT_REAL_OUTPUT | DFT_SCALE); |
||||
|
||||
if (ok && inplace && d_b.ptr() != d_b_data.ptr()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done for b\n"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
ok = false; |
||||
} |
||||
if (ok && inplace && d_c.ptr() != d_c_data.ptr()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done for c\n"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
ok = false; |
||||
} |
||||
if (ok && d_c.depth() != CV_32F) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad depth: %d\n", d_c.depth()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
ok = false; |
||||
} |
||||
if (ok && d_c.channels() != 1) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad channel count: %d\n", d_c.channels()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
ok = false; |
||||
} |
||||
if (ok) ok = cmp(a, Mat(d_c), rows * cols * 1e-5f); |
||||
if (!ok)
|
||||
ts->printf(cvtest::TS::CONSOLE, "testR2CThenC2R failed: hint=%s, cols=%d, rows=%d, inplace=%d\n",
|
||||
hint.c_str(), cols, rows, inplace); |
||||
} |
||||
}; |
||||
|
||||
TEST(dft, accuracy) { CV_GpuDftTest test; test.safe_run(); } |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,154 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature) |
||||
{ |
||||
return cv::gpu::TargetArchs::builtWith(feature) && info.supports(feature); |
||||
} |
||||
|
||||
const std::vector<cv::gpu::DeviceInfo>& devices() |
||||
{ |
||||
static std::vector<cv::gpu::DeviceInfo> devs; |
||||
static bool first = true; |
||||
|
||||
if (first) |
||||
{ |
||||
int deviceCount = cv::gpu::getCudaEnabledDeviceCount(); |
||||
|
||||
devs.reserve(deviceCount); |
||||
|
||||
for (int i = 0; i < deviceCount; ++i) |
||||
{ |
||||
cv::gpu::DeviceInfo info(i); |
||||
if (info.isCompatible()) |
||||
devs.push_back(info); |
||||
} |
||||
|
||||
first = false; |
||||
} |
||||
|
||||
return devs; |
||||
} |
||||
|
||||
std::vector<cv::gpu::DeviceInfo> devices(cv::gpu::FeatureSet feature) |
||||
{ |
||||
const std::vector<cv::gpu::DeviceInfo>& d = devices(); |
||||
|
||||
std::vector<cv::gpu::DeviceInfo> devs_filtered; |
||||
|
||||
if (cv::gpu::TargetArchs::builtWith(feature)) |
||||
{ |
||||
devs_filtered.reserve(d.size()); |
||||
|
||||
for (size_t i = 0, size = d.size(); i < size; ++i) |
||||
{ |
||||
const cv::gpu::DeviceInfo& info = d[i]; |
||||
|
||||
if (info.supports(feature)) |
||||
devs_filtered.push_back(info); |
||||
} |
||||
} |
||||
|
||||
return devs_filtered; |
||||
} |
||||
|
||||
std::vector<int> types(int depth_start, int depth_end, int cn_start, int cn_end) |
||||
{ |
||||
std::vector<int> v; |
||||
|
||||
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1)); |
||||
|
||||
for (int depth = depth_start; depth <= depth_end; ++depth) |
||||
{ |
||||
for (int cn = cn_start; cn <= cn_end; ++cn) |
||||
{ |
||||
v.push_back(CV_MAKETYPE(depth, cn)); |
||||
} |
||||
} |
||||
|
||||
return v; |
||||
} |
||||
|
||||
const std::vector<int>& all_types() |
||||
{ |
||||
static std::vector<int> v = types(CV_8U, CV_64F, 1, 4); |
||||
return v; |
||||
} |
||||
|
||||
cv::Mat readImage(const std::string& fileName, int flags) |
||||
{ |
||||
return cv::imread(std::string(cvtest::TS::ptr()->get_data_path()) + fileName, flags); |
||||
} |
||||
|
||||
double checkNorm(const cv::Mat& m1, const cv::Mat& m2) |
||||
{ |
||||
return cv::norm(m1, m2, cv::NORM_INF); |
||||
} |
||||
|
||||
double checkSimilarity(const cv::Mat& m1, const cv::Mat& m2) |
||||
{ |
||||
cv::Mat diff; |
||||
cv::matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED); |
||||
return std::abs(diff.at<float>(0, 0) - 1.f); |
||||
} |
||||
|
||||
namespace cv |
||||
{ |
||||
std::ostream& operator << (std::ostream& os, const Size& sz) |
||||
{ |
||||
return os << sz.width << "x" << sz.height; |
||||
} |
||||
|
||||
std::ostream& operator << (std::ostream& os, const Scalar& s) |
||||
{ |
||||
return os << "[" << s[0] << ", " << s[1] << ", " << s[2] << ", " << s[3] << "]"; |
||||
} |
||||
|
||||
namespace gpu |
||||
{ |
||||
std::ostream& operator << (std::ostream& os, const DeviceInfo& info) |
||||
{ |
||||
return os << info.name(); |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,103 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TEST_GPU_BASE_HPP__ |
||||
#define __OPENCV_TEST_GPU_BASE_HPP__ |
||||
|
||||
//! return true if device supports specified feature and gpu module was built with support the feature.
|
||||
bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature); |
||||
|
||||
//! return all devices compatible with current gpu module build.
|
||||
const std::vector<cv::gpu::DeviceInfo>& devices(); |
||||
//! return all devices compatible with current gpu module build which support specified feature.
|
||||
std::vector<cv::gpu::DeviceInfo> devices(cv::gpu::FeatureSet feature); |
||||
|
||||
//! return vector with types from specified range.
|
||||
std::vector<int> types(int depth_start, int depth_end, int cn_start, int cn_end); |
||||
|
||||
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4).
|
||||
const std::vector<int>& all_types(); |
||||
|
||||
//! read image from testdata folder.
|
||||
cv::Mat readImage(const std::string& fileName, int flags = CV_LOAD_IMAGE_COLOR); |
||||
|
||||
double checkNorm(const cv::Mat& m1, const cv::Mat& m2); |
||||
double checkSimilarity(const cv::Mat& m1, const cv::Mat& m2); |
||||
|
||||
#define OSTR_NAME(suf) ostr_ ## suf |
||||
|
||||
#define PRINT_PARAM(name) \ |
||||
std::ostringstream OSTR_NAME(name); \
|
||||
OSTR_NAME(name) << # name << ": " << name; \
|
||||
SCOPED_TRACE(OSTR_NAME(name).str()); |
||||
|
||||
#define PRINT_TYPE(type) \ |
||||
std::ostringstream OSTR_NAME(type); \
|
||||
OSTR_NAME(type) << # type << ": " << cvtest::getTypeName(type) << "c" << CV_MAT_CN(type); \
|
||||
SCOPED_TRACE(OSTR_NAME(type).str()); |
||||
|
||||
#define EXPECT_MAT_NEAR(mat1, mat2, eps) \ |
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkNorm(mat1, mat2), eps); \
|
||||
} |
||||
|
||||
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ |
||||
{ \
|
||||
ASSERT_EQ(mat1.type(), mat2.type()); \
|
||||
ASSERT_EQ(mat1.size(), mat2.size()); \
|
||||
EXPECT_LE(checkSimilarity(mat1, mat2), eps); \
|
||||
} |
||||
|
||||
|
||||
//! for gtest ASSERT
|
||||
namespace cv |
||||
{ |
||||
std::ostream& operator << (std::ostream& os, const Size& sz); |
||||
std::ostream& operator << (std::ostream& os, const Scalar& s); |
||||
namespace gpu |
||||
{ |
||||
std::ostream& operator << (std::ostream& os, const DeviceInfo& info); |
||||
} |
||||
} |
||||
|
||||
#endif // __OPENCV_TEST_GPU_BASE_HPP__
|
File diff suppressed because it is too large
Load Diff
@ -1,966 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <cmath> |
||||
#include <limits> |
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
using namespace gpu; |
||||
|
||||
class CV_GpuImageProcTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
virtual ~CV_GpuImageProcTest() {} |
||||
|
||||
protected: |
||||
void run(int); |
||||
|
||||
int test8UC1 (const Mat& img); |
||||
int test8UC4 (const Mat& img); |
||||
int test32SC1(const Mat& img); |
||||
int test32FC1(const Mat& img); |
||||
|
||||
virtual int test(const Mat& img) = 0; |
||||
|
||||
int CheckNorm(const Mat& m1, const Mat& m2); |
||||
|
||||
// Checks whether two images are similar enough using normalized
|
||||
// cross-correlation as an error measure
|
||||
int CheckSimilarity(const Mat& m1, const Mat& m2, float max_err=1e-3f); |
||||
}; |
||||
|
||||
|
||||
int CV_GpuImageProcTest::test8UC1(const Mat& img) |
||||
{ |
||||
cv::Mat img_C1; |
||||
cvtColor(img, img_C1, CV_BGR2GRAY); |
||||
|
||||
return test(img_C1); |
||||
} |
||||
|
||||
int CV_GpuImageProcTest::test8UC4(const Mat& img) |
||||
{ |
||||
cv::Mat img_C4; |
||||
cvtColor(img, img_C4, CV_BGR2BGRA); |
||||
|
||||
return test(img_C4); |
||||
} |
||||
|
||||
int CV_GpuImageProcTest::test32SC1(const Mat& img) |
||||
{ |
||||
cv::Mat img_C1; |
||||
cvtColor(img, img_C1, CV_BGR2GRAY); |
||||
img_C1.convertTo(img_C1, CV_32S); |
||||
|
||||
return test(img_C1); |
||||
} |
||||
|
||||
int CV_GpuImageProcTest::test32FC1(const Mat& img) |
||||
{ |
||||
cv::Mat temp, img_C1; |
||||
img.convertTo(temp, CV_32F, 1.f / 255.f); |
||||
cvtColor(temp, img_C1, CV_BGR2GRAY); |
||||
|
||||
return test(img_C1); |
||||
} |
||||
|
||||
int CV_GpuImageProcTest::CheckNorm(const Mat& m1, const Mat& m2) |
||||
{ |
||||
double ret = norm(m1, m2, NORM_INF); |
||||
|
||||
if (ret < std::numeric_limits<double>::epsilon()) |
||||
{ |
||||
return cvtest::TS::OK; |
||||
} |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Norm: %f\n", ret); |
||||
return cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
} |
||||
|
||||
int CV_GpuImageProcTest::CheckSimilarity(const Mat& m1, const Mat& m2, float max_err) |
||||
{ |
||||
Mat diff; |
||||
cv::matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED); |
||||
|
||||
float err = abs(diff.at<float>(0, 0) - 1.f); |
||||
|
||||
if (err > max_err) |
||||
return cvtest::TS::FAIL_INVALID_OUTPUT; |
||||
|
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
void CV_GpuImageProcTest::run( int ) |
||||
{ |
||||
//load image
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png"); |
||||
|
||||
if (img.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
int testResult = cvtest::TS::OK; |
||||
//run tests
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 8UC1========\n"); |
||||
if (test8UC1(img) == cvtest::TS::OK) |
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n"); |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "FAIL\n"); |
||||
testResult = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 8UC4========\n"); |
||||
if (test8UC4(img) == cvtest::TS::OK) |
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n"); |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "FAIL\n"); |
||||
testResult = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 32SC1========\n"); |
||||
if (test32SC1(img) == cvtest::TS::OK) |
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n"); |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "FAIL\n"); |
||||
testResult = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
ts->printf(cvtest::TS::LOG, "\n========Start test 32FC1========\n"); |
||||
if (test32FC1(img) == cvtest::TS::OK) |
||||
ts->printf(cvtest::TS::LOG, "SUCCESS\n"); |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "FAIL\n"); |
||||
testResult = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
ts->set_failed_test_info(testResult); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// threshold
|
||||
struct CV_GpuImageThresholdTest : public CV_GpuImageProcTest |
||||
{ |
||||
public: |
||||
CV_GpuImageThresholdTest() {} |
||||
|
||||
int test(const Mat& img) |
||||
{ |
||||
if (img.type() != CV_8UC1 && img.type() != CV_32FC1) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); |
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
const double maxVal = img.type() == CV_8UC1 ? 255 : 1.0; |
||||
|
||||
cv::RNG& rng = ts->get_rng(); |
||||
|
||||
int res = cvtest::TS::OK; |
||||
|
||||
for (int type = THRESH_BINARY; type <= THRESH_TOZERO_INV; ++type) |
||||
{ |
||||
const double thresh = rng.uniform(0.0, maxVal); |
||||
|
||||
cv::Mat cpuRes; |
||||
cv::threshold(img, cpuRes, thresh, maxVal, type); |
||||
|
||||
GpuMat gpu1(img); |
||||
GpuMat gpuRes; |
||||
cv::gpu::threshold(gpu1, gpuRes, thresh, maxVal, type); |
||||
|
||||
if (CheckNorm(cpuRes, gpuRes) != cvtest::TS::OK) |
||||
res = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
return res; |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// resize
|
||||
struct CV_GpuNppImageResizeTest : public CV_GpuImageProcTest |
||||
{ |
||||
CV_GpuNppImageResizeTest() {} |
||||
int test(const Mat& img) |
||||
{ |
||||
if (img.type() != CV_8UC1 && img.type() != CV_8UC4) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Unsupported type\n"); |
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
int interpolations[] = {INTER_NEAREST, INTER_LINEAR, /*INTER_CUBIC,*/ /*INTER_LANCZOS4*/}; |
||||
const char* interpolations_str[] = {"INTER_NEAREST", "INTER_LINEAR", /*"INTER_CUBIC",*/ /*"INTER_LANCZOS4"*/}; |
||||
int interpolations_num = sizeof(interpolations) / sizeof(int); |
||||
|
||||
int test_res = cvtest::TS::OK; |
||||
|
||||
for (int i = 0; i < interpolations_num; ++i) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "Interpolation: %s\n", interpolations_str[i]); |
||||
|
||||
Mat cpu_res1, cpu_res2; |
||||
cv::resize(img, cpu_res1, Size(), 2.0, 2.0, interpolations[i]); |
||||
cv::resize(cpu_res1, cpu_res2, Size(), 0.5, 0.5, interpolations[i]); |
||||
|
||||
GpuMat gpu1(img), gpu_res1, gpu_res2; |
||||
cv::gpu::resize(gpu1, gpu_res1, Size(), 2.0, 2.0, interpolations[i]); |
||||
cv::gpu::resize(gpu_res1, gpu_res2, Size(), 0.5, 0.5, interpolations[i]); |
||||
|
||||
if (CheckSimilarity(cpu_res2, gpu_res2) != cvtest::TS::OK) |
||||
test_res = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
return test_res; |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// copyMakeBorder
|
||||
struct CV_GpuNppImageCopyMakeBorderTest : public CV_GpuImageProcTest |
||||
{ |
||||
CV_GpuNppImageCopyMakeBorderTest() {} |
||||
|
||||
int test(const Mat& img) |
||||
{ |
||||
if (img.type() != CV_8UC1 && img.type() != CV_8UC4 && img.type() != CV_32SC1) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); |
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
cv::RNG& rng = ts->get_rng(); |
||||
int top = rng.uniform(1, 10); |
||||
int botton = rng.uniform(1, 10); |
||||
int left = rng.uniform(1, 10); |
||||
int right = rng.uniform(1, 10); |
||||
cv::Scalar val(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); |
||||
|
||||
Mat cpudst; |
||||
cv::copyMakeBorder(img, cpudst, top, botton, left, right, BORDER_CONSTANT, val); |
||||
|
||||
GpuMat gpu1(img); |
||||
GpuMat gpudst; |
||||
cv::gpu::copyMakeBorder(gpu1, gpudst, top, botton, left, right, val); |
||||
|
||||
return CheckNorm(cpudst, gpudst); |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// warpAffine
|
||||
struct CV_GpuNppImageWarpAffineTest : public CV_GpuImageProcTest |
||||
{ |
||||
CV_GpuNppImageWarpAffineTest() {} |
||||
|
||||
int test(const Mat& img) |
||||
{ |
||||
if (img.type() == CV_32SC1) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); |
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
static double reflect[2][3] = { {-1, 0, 0}, |
||||
{ 0, -1, 0} }; |
||||
reflect[0][2] = img.cols; |
||||
reflect[1][2] = img.rows; |
||||
|
||||
Mat M(2, 3, CV_64F, (void*)reflect); |
||||
|
||||
int flags[] = {INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_NEAREST | WARP_INVERSE_MAP, INTER_LINEAR | WARP_INVERSE_MAP, INTER_CUBIC | WARP_INVERSE_MAP}; |
||||
const char* flags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"}; |
||||
int flags_num = sizeof(flags) / sizeof(int); |
||||
|
||||
int test_res = cvtest::TS::OK; |
||||
|
||||
for (int i = 0; i < flags_num; ++i) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nFlags: %s\n", flags_str[i]); |
||||
|
||||
Mat cpudst; |
||||
cv::warpAffine(img, cpudst, M, img.size(), flags[i]); |
||||
|
||||
GpuMat gpu1(img); |
||||
GpuMat gpudst; |
||||
cv::gpu::warpAffine(gpu1, gpudst, M, gpu1.size(), flags[i]); |
||||
|
||||
// Check inner parts (ignoring 1 pixel width border)
|
||||
if (CheckSimilarity(cpudst.rowRange(1, cpudst.rows - 1).colRange(1, cpudst.cols - 1), |
||||
gpudst.rowRange(1, gpudst.rows - 1).colRange(1, gpudst.cols - 1)) != cvtest::TS::OK) |
||||
test_res = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
return test_res; |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// warpPerspective
|
||||
struct CV_GpuNppImageWarpPerspectiveTest : public CV_GpuImageProcTest |
||||
{ |
||||
CV_GpuNppImageWarpPerspectiveTest() {} |
||||
|
||||
|
||||
int test(const Mat& img) |
||||
{ |
||||
if (img.type() == CV_32SC1) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); |
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
static double reflect[3][3] = { { -1, 0, 0}, |
||||
{ 0, -1, 0}, |
||||
{ 0, 0, 1 }}; |
||||
reflect[0][2] = img.cols; |
||||
reflect[1][2] = img.rows; |
||||
Mat M(3, 3, CV_64F, (void*)reflect); |
||||
|
||||
int flags[] = {INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_NEAREST | WARP_INVERSE_MAP, INTER_LINEAR | WARP_INVERSE_MAP, INTER_CUBIC | WARP_INVERSE_MAP}; |
||||
const char* flags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"}; |
||||
int flags_num = sizeof(flags) / sizeof(int); |
||||
|
||||
int test_res = cvtest::TS::OK; |
||||
|
||||
for (int i = 0; i < flags_num; ++i) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nFlags: %s\n", flags_str[i]); |
||||
|
||||
Mat cpudst; |
||||
cv::warpPerspective(img, cpudst, M, img.size(), flags[i]); |
||||
|
||||
GpuMat gpu1(img); |
||||
GpuMat gpudst; |
||||
cv::gpu::warpPerspective(gpu1, gpudst, M, gpu1.size(), flags[i]); |
||||
|
||||
// Check inner parts (ignoring 1 pixel width border)
|
||||
if (CheckSimilarity(cpudst.rowRange(1, cpudst.rows - 1).colRange(1, cpudst.cols - 1), |
||||
gpudst.rowRange(1, gpudst.rows - 1).colRange(1, gpudst.cols - 1)) != cvtest::TS::OK) |
||||
test_res = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
return test_res; |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// integral
|
||||
struct CV_GpuNppImageIntegralTest : public CV_GpuImageProcTest |
||||
{ |
||||
CV_GpuNppImageIntegralTest() {} |
||||
|
||||
int test(const Mat& img) |
||||
{ |
||||
if (img.type() != CV_8UC1) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); |
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
Mat cpusum; |
||||
cv::integral(img, cpusum, CV_32S); |
||||
|
||||
GpuMat gpu1(img); |
||||
GpuMat gpusum; |
||||
cv::gpu::integral(gpu1, gpusum); |
||||
|
||||
return CheckNorm(cpusum, gpusum) == cvtest::TS::OK ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
//struct CV_GpuNppImageCannyTest : public CV_GpuImageProcTest
|
||||
//{
|
||||
// CV_GpuNppImageCannyTest() : CV_GpuImageProcTest( "GPU-NppImageCanny", "Canny" ) {}
|
||||
//
|
||||
// int test(const Mat& img)
|
||||
// {
|
||||
// if (img.type() != CV_8UC1)
|
||||
// {
|
||||
// ts->printf(cvtest::TS::LOG, "\nUnsupported type\n");
|
||||
// return cvtest::TS::OK;
|
||||
// }
|
||||
//
|
||||
// const double threshold1 = 1.0, threshold2 = 10.0;
|
||||
//
|
||||
// Mat cpudst;
|
||||
// cv::Canny(img, cpudst, threshold1, threshold2);
|
||||
//
|
||||
// GpuMat gpu1(img);
|
||||
// GpuMat gpudst;
|
||||
// cv::gpu::Canny(gpu1, gpudst, threshold1, threshold2);
|
||||
//
|
||||
// return CheckNorm(cpudst, gpudst);
|
||||
// }
|
||||
//};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// cvtColor
|
||||
class CV_GpuCvtColorTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_GpuCvtColorTest() {} |
||||
~CV_GpuCvtColorTest() {}; |
||||
|
||||
protected: |
||||
void run(int); |
||||
|
||||
int CheckNorm(const Mat& m1, const Mat& m2); |
||||
}; |
||||
|
||||
|
||||
int CV_GpuCvtColorTest::CheckNorm(const Mat& m1, const Mat& m2) |
||||
{ |
||||
float max_err = 1e-2f; |
||||
|
||||
Mat diff; |
||||
cv::matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED); |
||||
|
||||
float err = abs(diff.at<float>(0, 0) - 1.f); |
||||
|
||||
if (err > max_err) |
||||
return cvtest::TS::FAIL_INVALID_OUTPUT; |
||||
|
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
void CV_GpuCvtColorTest::run( int ) |
||||
{ |
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png"); |
||||
|
||||
if (img.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
int testResult = cvtest::TS::OK; |
||||
cv::Mat cpuRes; |
||||
cv::gpu::GpuMat gpuImg(img), gpuRes; |
||||
|
||||
int codes[] = { CV_BGR2RGB, CV_RGB2BGRA, CV_BGRA2RGB, |
||||
CV_RGB2BGR555, CV_BGR5552BGR, CV_BGR2BGR565, CV_BGR5652RGB, |
||||
CV_RGB2YCrCb, CV_YCrCb2BGR, CV_BGR2YUV, CV_YUV2RGB, |
||||
CV_RGB2XYZ, CV_XYZ2BGR, CV_BGR2XYZ, CV_XYZ2RGB, |
||||
CV_RGB2HSV, CV_HSV2BGR, CV_BGR2HSV_FULL, CV_HSV2RGB_FULL, |
||||
CV_RGB2HLS, CV_HLS2BGR, CV_BGR2HLS_FULL, CV_HLS2RGB_FULL, |
||||
CV_RGB2GRAY, CV_GRAY2BGRA, CV_BGRA2GRAY, |
||||
CV_GRAY2BGR555, CV_BGR5552GRAY, CV_GRAY2BGR565, CV_BGR5652GRAY}; |
||||
const char* codes_str[] = { "CV_BGR2RGB", "CV_RGB2BGRA", "CV_BGRA2RGB", |
||||
"CV_RGB2BGR555", "CV_BGR5552BGR", "CV_BGR2BGR565", "CV_BGR5652RGB", |
||||
"CV_RGB2YCrCb", "CV_YCrCb2BGR", "CV_BGR2YUV", "CV_YUV2RGB", |
||||
"CV_RGB2XYZ", "CV_XYZ2BGR", "CV_BGR2XYZ", "CV_XYZ2RGB", |
||||
"CV_RGB2HSV", "CV_HSV2RGB", "CV_BGR2HSV_FULL", "CV_HSV2RGB_FULL", |
||||
"CV_RGB2HLS", "CV_HLS2RGB", "CV_BGR2HLS_FULL", "CV_HLS2RGB_FULL", |
||||
"CV_RGB2GRAY", "CV_GRAY2BGRA", "CV_BGRA2GRAY", |
||||
"CV_GRAY2BGR555", "CV_BGR5552GRAY", "CV_GRAY2BGR565", "CV_BGR5652GRAY"}; |
||||
int codes_num = sizeof(codes) / sizeof(int); |
||||
|
||||
for (int i = 0; i < codes_num; ++i) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\n%s\n", codes_str[i]); |
||||
|
||||
cv::cvtColor(img, cpuRes, codes[i]); |
||||
cv::gpu::cvtColor(gpuImg, gpuRes, codes[i]); |
||||
|
||||
if (CheckNorm(cpuRes, gpuRes) == cvtest::TS::OK) |
||||
ts->printf(cvtest::TS::LOG, "\nSUCCESS\n"); |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nFAIL\n"); |
||||
testResult = cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
|
||||
img = cpuRes; |
||||
gpuImg = gpuRes; |
||||
} |
||||
|
||||
ts->set_failed_test_info(testResult); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Histograms
|
||||
class CV_GpuHistogramsTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_GpuHistogramsTest() {} |
||||
~CV_GpuHistogramsTest() {}; |
||||
|
||||
protected: |
||||
void run(int); |
||||
|
||||
int CheckNorm(const Mat& m1, const Mat& m2) |
||||
{ |
||||
double ret = norm(m1, m2, NORM_INF); |
||||
|
||||
if (ret < std::numeric_limits<double>::epsilon()) |
||||
{ |
||||
return cvtest::TS::OK; |
||||
} |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret); |
||||
return cvtest::TS::FAIL_GENERIC; |
||||
} |
||||
} |
||||
}; |
||||
|
||||
void CV_GpuHistogramsTest::run( int ) |
||||
{ |
||||
//load image
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png"); |
||||
|
||||
if (img.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
Mat hsv; |
||||
cv::cvtColor(img, hsv, CV_BGR2HSV); |
||||
|
||||
int hbins = 30; |
||||
int histSize[] = {hbins}; |
||||
|
||||
float hranges[] = {0, 180}; |
||||
const float* ranges[] = {hranges}; |
||||
|
||||
MatND hist; |
||||
|
||||
int channels[] = {0}; |
||||
calcHist(&hsv, 1, channels, Mat(), hist, 1, histSize, ranges); |
||||
|
||||
GpuMat gpuHsv(hsv); |
||||
std::vector<GpuMat> srcs; |
||||
cv::gpu::split(gpuHsv, srcs); |
||||
GpuMat gpuHist; |
||||
histEven(srcs[0], gpuHist, hbins, (int)hranges[0], (int)hranges[1]); |
||||
|
||||
Mat cpuHist = hist; |
||||
cpuHist = cpuHist.t(); |
||||
cpuHist.convertTo(cpuHist, CV_32S); |
||||
|
||||
ts->set_failed_test_info(CheckNorm(cpuHist, gpuHist)); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Corner Harris feature detector
|
||||
|
||||
struct CV_GpuCornerHarrisTest: cvtest::BaseTest |
||||
{ |
||||
CV_GpuCornerHarrisTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
for (int i = 0; i < 5; ++i) |
||||
{ |
||||
int rows = 25 + rand() % 300, cols = 25 + rand() % 300; |
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; |
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, -1)) return; |
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; |
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, -1)) return; |
||||
} |
||||
} |
||||
|
||||
bool compareToCpuTest(int rows, int cols, int depth, int blockSize, int apertureSize) |
||||
{ |
||||
RNG rng; |
||||
cv::Mat src(rows, cols, depth); |
||||
if (depth == CV_32F) |
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(1)); |
||||
else if (depth == CV_8U) |
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(256)); |
||||
|
||||
double k = 0.1; |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::gpu::GpuMat dst; |
||||
cv::Mat dsth; |
||||
int borderType; |
||||
|
||||
borderType = BORDER_REFLECT101; |
||||
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType); |
||||
cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, k, borderType); |
||||
|
||||
dsth = dst; |
||||
for (int i = 0; i < dst.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < dst.cols; ++j) |
||||
{ |
||||
float a = dst_gold.at<float>(i, j); |
||||
float b = dsth.at<float>(i, j); |
||||
if (fabs(a - b) > 1e-3f) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d\n", i, j, a, b, apertureSize); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
}; |
||||
} |
||||
} |
||||
|
||||
borderType = BORDER_REPLICATE; |
||||
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType); |
||||
cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, k, borderType); |
||||
|
||||
dsth = dst; |
||||
for (int i = 0; i < dst.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < dst.cols; ++j) |
||||
{ |
||||
float a = dst_gold.at<float>(i, j); |
||||
float b = dsth.at<float>(i, j); |
||||
if (fabs(a - b) > 1e-3f) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d\n", i, j, a, b, apertureSize); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
}; |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Corner Min Eigen Val
|
||||
|
||||
struct CV_GpuCornerMinEigenValTest: cvtest::BaseTest |
||||
{ |
||||
CV_GpuCornerMinEigenValTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
for (int i = 0; i < 3; ++i) |
||||
{ |
||||
int rows = 25 + rand() % 300, cols = 25 + rand() % 300; |
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, -1)) return; |
||||
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; |
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, -1)) return; |
||||
if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; |
||||
} |
||||
} |
||||
|
||||
bool compareToCpuTest(int rows, int cols, int depth, int blockSize, int apertureSize) |
||||
{ |
||||
RNG rng; |
||||
cv::Mat src(rows, cols, depth); |
||||
if (depth == CV_32F) |
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(1)); |
||||
else if (depth == CV_8U) |
||||
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(256)); |
||||
|
||||
cv::Mat dst_gold; |
||||
cv::gpu::GpuMat dst; |
||||
cv::Mat dsth; |
||||
|
||||
int borderType; |
||||
|
||||
borderType = BORDER_REFLECT101; |
||||
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType); |
||||
cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, borderType); |
||||
|
||||
dsth = dst; |
||||
for (int i = 0; i < dst.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < dst.cols; ++j) |
||||
{ |
||||
float a = dst_gold.at<float>(i, j); |
||||
float b = dsth.at<float>(i, j); |
||||
if (fabs(a - b) > 1e-2f) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d %d\n", i, j, a, b, apertureSize, blockSize); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
}; |
||||
} |
||||
} |
||||
|
||||
borderType = BORDER_REPLICATE; |
||||
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType); |
||||
cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, borderType); |
||||
|
||||
dsth = dst; |
||||
for (int i = 0; i < dst.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < dst.cols; ++j) |
||||
{ |
||||
float a = dst_gold.at<float>(i, j); |
||||
float b = dsth.at<float>(i, j); |
||||
if (fabs(a - b) > 1e-2f) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d %d\n", i, j, a, b, apertureSize, blockSize); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
}; |
||||
} |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
}; |
||||
|
||||
struct CV_GpuColumnSumTest: cvtest::BaseTest |
||||
{ |
||||
CV_GpuColumnSumTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
int cols = 375; |
||||
int rows = 1072; |
||||
|
||||
Mat src(rows, cols, CV_32F); |
||||
RNG rng(1); |
||||
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(1)); |
||||
|
||||
GpuMat d_dst; |
||||
columnSum(GpuMat(src), d_dst); |
||||
|
||||
Mat dst = d_dst; |
||||
for (int j = 0; j < src.cols; ++j) |
||||
{ |
||||
float a = src.at<float>(0, j); |
||||
float b = dst.at<float>(0, j); |
||||
if (fabs(a - b) > 0.5f) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "big diff at %d %d: %f %f\n", 0, j, a, b); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
for (int i = 1; i < src.rows; ++i) |
||||
{ |
||||
for (int j = 0; j < src.cols; ++j) |
||||
{ |
||||
float a = src.at<float>(i, j) += src.at<float>(i - 1, j); |
||||
float b = dst.at<float>(i, j); |
||||
if (fabs(a - b) > 0.5f) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "big diff at %d %d: %f %f\n", i, j, a, b); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
}; |
||||
|
||||
struct CV_GpuNormTest : cvtest::BaseTest |
||||
{ |
||||
CV_GpuNormTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
RNG rng(0); |
||||
|
||||
int rows = rng.uniform(1, 500); |
||||
int cols = rng.uniform(1, 500); |
||||
|
||||
for (int cn = 1; cn <= 4; ++cn) |
||||
{ |
||||
test(NORM_L1, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10)); |
||||
test(NORM_L1, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_L1, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10)); |
||||
test(NORM_L1, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_L1, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_L1, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1)); |
||||
|
||||
test(NORM_L2, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10)); |
||||
test(NORM_L2, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_L2, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10)); |
||||
test(NORM_L2, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_L2, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_L2, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1)); |
||||
|
||||
test(NORM_INF, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10)); |
||||
test(NORM_INF, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_INF, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10)); |
||||
test(NORM_INF, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_INF, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10)); |
||||
test(NORM_INF, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1)); |
||||
} |
||||
} |
||||
|
||||
void gen(Mat& mat, int rows, int cols, int type, Scalar low, Scalar high) |
||||
{ |
||||
mat.create(rows, cols, type); |
||||
RNG rng(0); |
||||
rng.fill(mat, RNG::UNIFORM, low, high); |
||||
} |
||||
|
||||
void test(int norm_type, int rows, int cols, int depth, int cn, Scalar low, Scalar high) |
||||
{ |
||||
int type = CV_MAKE_TYPE(depth, cn); |
||||
|
||||
Mat src; |
||||
gen(src, rows, cols, type, low, high); |
||||
|
||||
double gold = norm(src, norm_type); |
||||
double mine = norm(GpuMat(src), norm_type); |
||||
|
||||
if (abs(gold - mine) > 1e-3) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "failed test: gold=%f, mine=%f, norm_type=%d, rows=%d, " |
||||
"cols=%d, depth=%d, cn=%d\n", gold, mine, norm_type, rows, cols, depth, cn); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// reprojectImageTo3D
|
||||
class CV_GpuReprojectImageTo3DTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_GpuReprojectImageTo3DTest() {} |
||||
|
||||
protected: |
||||
void run(int) |
||||
{ |
||||
Mat disp(320, 240, CV_8UC1); |
||||
|
||||
RNG& rng = ts->get_rng(); |
||||
rng.fill(disp, RNG::UNIFORM, Scalar(5), Scalar(30)); |
||||
|
||||
Mat Q(4, 4, CV_32FC1); |
||||
rng.fill(Q, RNG::UNIFORM, Scalar(0.1), Scalar(1)); |
||||
|
||||
Mat cpures; |
||||
GpuMat gpures; |
||||
|
||||
reprojectImageTo3D(disp, cpures, Q, false); |
||||
reprojectImageTo3D(GpuMat(disp), gpures, Q); |
||||
|
||||
Mat temp = gpures; |
||||
|
||||
for (int y = 0; y < cpures.rows; ++y) |
||||
{ |
||||
const Vec3f* cpu_row = cpures.ptr<Vec3f>(y); |
||||
const Vec4f* gpu_row = temp.ptr<Vec4f>(y); |
||||
for (int x = 0; x < cpures.cols; ++x) |
||||
{ |
||||
Vec3f a = cpu_row[x]; |
||||
Vec4f b = gpu_row[x]; |
||||
|
||||
if (fabs(a[0] - b[0]) > 1e-5 || fabs(a[1] - b[1]) > 1e-5 || fabs(a[2] - b[2]) > 1e-5) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
}; |
||||
|
||||
TEST(threshold, accuracy) { CV_GpuImageThresholdTest test; test.safe_run(); } |
||||
TEST(resize, accuracy) { CV_GpuNppImageResizeTest test; test.safe_run(); } |
||||
TEST(copyMakeBorder, accuracy) { CV_GpuNppImageCopyMakeBorderTest test; test.safe_run(); } |
||||
TEST(warpAffine, accuracy) { CV_GpuNppImageWarpAffineTest test; test.safe_run(); } |
||||
TEST(warpPerspective, accuracy) { CV_GpuNppImageWarpPerspectiveTest test; test.safe_run(); } |
||||
TEST(integral, accuracy) { CV_GpuNppImageIntegralTest test; test.safe_run(); } |
||||
TEST(cvtColor, accuracy) { CV_GpuCvtColorTest test; test.safe_run(); } |
||||
TEST(histograms, accuracy) { CV_GpuHistogramsTest test; test.safe_run(); } |
||||
TEST(cornerHearris, accuracy) { CV_GpuCornerHarrisTest test; test.safe_run(); } |
||||
TEST(minEigen, accuracy) { CV_GpuCornerMinEigenValTest test; test.safe_run(); } |
||||
TEST(columnSum, accuracy) { CV_GpuColumnSumTest test; test.safe_run(); } |
||||
TEST(norm, accuracy) { CV_GpuNormTest test; test.safe_run(); } |
||||
TEST(reprojectImageTo3D, accuracy) { CV_GpuReprojectImageTo3DTest test; test.safe_run(); } |
||||
|
||||
TEST(downsample, accuracy_on_8U) |
||||
{ |
||||
RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
Size size(200 + cvtest::randInt(rng) % 1000, 200 + cvtest::randInt(rng) % 1000); |
||||
Mat src = cvtest::randomMat(rng, size, CV_8U, 0, 255, false); |
||||
|
||||
for (int k = 2; k <= 5; ++k) |
||||
{ |
||||
GpuMat d_dst; |
||||
downsample(GpuMat(src), d_dst, k); |
||||
|
||||
Size dst_gold_size((src.cols + k - 1) / k, (src.rows + k - 1) / k); |
||||
ASSERT_EQ(dst_gold_size.width, d_dst.cols) |
||||
<< "rows=" << size.height << ", cols=" << size.width << ", k=" << k; |
||||
ASSERT_EQ(dst_gold_size.height, d_dst.rows) |
||||
<< "rows=" << size.height << ", cols=" << size.width << ", k=" << k; |
||||
|
||||
Mat dst = d_dst; |
||||
for (int y = 0; y < dst.rows; ++y) |
||||
for (int x = 0; x < dst.cols; ++x) |
||||
ASSERT_EQ(src.at<uchar>(y * k, x * k), dst.at<uchar>(y, x)) |
||||
<< "rows=" << size.height << ", cols=" << size.width << ", k=" << k; |
||||
} |
||||
} |
||||
|
||||
TEST(downsample, accuracy_on_32F) |
||||
{ |
||||
RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
Size size(200 + cvtest::randInt(rng) % 1000, 200 + cvtest::randInt(rng) % 1000); |
||||
Mat src = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); |
||||
|
||||
for (int k = 2; k <= 5; ++k) |
||||
{ |
||||
GpuMat d_dst; |
||||
downsample(GpuMat(src), d_dst, k); |
||||
|
||||
Size dst_gold_size((src.cols + k - 1) / k, (src.rows + k - 1) / k); |
||||
ASSERT_EQ(dst_gold_size.width, d_dst.cols) |
||||
<< "rows=" << size.height << ", cols=" << size.width << ", k=" << k; |
||||
ASSERT_EQ(dst_gold_size.height, d_dst.rows) |
||||
<< "rows=" << size.height << ", cols=" << size.width << ", k=" << k; |
||||
|
||||
Mat dst = d_dst; |
||||
for (int y = 0; y < dst.rows; ++y) |
||||
for (int x = 0; x < dst.cols; ++x) |
||||
ASSERT_FLOAT_EQ(src.at<float>(y * k, x * k), dst.at<float>(y, x)) |
||||
<< "rows=" << size.height << ", cols=" << size.width << ", k=" << k; |
||||
} |
||||
} |
@ -1,13 +1,107 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
int main(int argc, char **argv) |
||||
#ifdef HAVE_CUDA |
||||
|
||||
void print_info() |
||||
{ |
||||
int deviceCount = cv::gpu::getCudaEnabledDeviceCount(); |
||||
|
||||
printf("Found %d CUDA devices\n\n", deviceCount); |
||||
|
||||
for (int i = 0; i < deviceCount; ++i) |
||||
{ |
||||
cv::gpu::DeviceInfo info(i); |
||||
printf("Device %d:\n", i); |
||||
printf("\tName: %s\n", info.name().c_str()); |
||||
printf("\tCompute capability version: %d.%d\n", info.majorVersion(), info.minorVersion()); |
||||
printf("\tTotal memory: %d Mb\n", static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0)); |
||||
printf("\tFree memory: %d Mb\n", static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0)); |
||||
if (!info.isCompatible()) |
||||
printf("\tThis device is not compatible with current GPU module build\n"); |
||||
printf("\n"); |
||||
} |
||||
|
||||
printf("GPU module was compiled for next GPU archs:\n"); |
||||
printf("\tBIN:%s\n", CUDA_ARCH_BIN); |
||||
printf("\tPTX:%s\n\n", CUDA_ARCH_PTX); |
||||
} |
||||
|
||||
enum OutputLevel |
||||
{ |
||||
OutputLevelNone, |
||||
OutputLevelCompact, |
||||
OutputLevelFull |
||||
}; |
||||
|
||||
extern OutputLevel nvidiaTestOutputLevel; |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
cvtest::TS::ptr()->init("gpu"); |
||||
::testing::InitGoogleTest(&argc, argv); |
||||
#ifdef HAVE_CUDA |
||||
testing::InitGoogleTest(&argc, argv); |
||||
|
||||
cv::CommandLineParser parser(argc, (const char**)argv); |
||||
|
||||
std::string outputLevel = parser.get<std::string>("nvtest_output_level", "none"); |
||||
|
||||
if (outputLevel == "none") |
||||
nvidiaTestOutputLevel = OutputLevelNone; |
||||
else if (outputLevel == "compact") |
||||
nvidiaTestOutputLevel = OutputLevelCompact; |
||||
else if (outputLevel == "full") |
||||
nvidiaTestOutputLevel = OutputLevelFull; |
||||
|
||||
print_info(); |
||||
return RUN_ALL_TESTS(); |
||||
#else |
||||
std::cerr << "opencv_test_gpu: OpenCV was compiled without GPU support\n"; |
||||
return -1; |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
#else // HAVE_CUDA
|
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
printf("OpenCV was built without CUDA support\n"); |
||||
return 0; |
||||
} |
||||
|
||||
#endif // HAVE_CUDA
|
@ -1,295 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include <string> |
||||
#include <iostream> |
||||
|
||||
//#define SHOW_TIME
|
||||
|
||||
#ifdef SHOW_TIME |
||||
#include <ctime> |
||||
#define F(x) x |
||||
#else |
||||
#define F(x) |
||||
#endif |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
struct CV_GpuMatchTemplateTest: cvtest::BaseTest
|
||||
{ |
||||
CV_GpuMatchTemplateTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
if (!double_ok) |
||||
{ |
||||
// For sqrIntegral
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
Mat image, templ; |
||||
Mat dst_gold; |
||||
gpu::GpuMat dst; |
||||
int n, m, h, w; |
||||
F(clock_t t;) |
||||
|
||||
RNG& rng = ts->get_rng(); |
||||
|
||||
for (int cn = 1; cn <= 4; ++cn) |
||||
{ |
||||
F(ts->printf(cvtest::TS::CONSOLE, "cn: %d\n", cn);) |
||||
for (int i = 0; i <= 0; ++i) |
||||
{ |
||||
n = rng.uniform(30, 100); |
||||
m = rng.uniform(30, 100); |
||||
h = rng.uniform(5, n - 1); |
||||
w = rng.uniform(5, m - 1); |
||||
|
||||
gen(image, n, m, CV_8U, cn); |
||||
gen(templ, h, w, CV_8U, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF); |
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), 5 * h * w * 1e-4f, "SQDIFF 8U")) return; |
||||
|
||||
gen(image, n, m, CV_8U, cn); |
||||
gen(templ, h, w, CV_8U, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF_NORMED); |
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF_NORMED); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), h * w * 1e-5f, "SQDIFF_NOREMD 8U")) return; |
||||
|
||||
gen(image, n, m, CV_8U, cn); |
||||
gen(templ, h, w, CV_8U, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCORR); |
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCORR 8U")) return; |
||||
|
||||
gen(image, n, m, CV_8U, cn); |
||||
gen(templ, h, w, CV_8U, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCORR_NORMED); |
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR_NORMED); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCORR_NORMED 8U")) return; |
||||
|
||||
gen(image, n, m, CV_8U, cn); |
||||
gen(templ, h, w, CV_8U, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF); |
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCOEFF 8U")) return; |
||||
|
||||
gen(image, n, m, CV_8U, cn); |
||||
gen(templ, h, w, CV_8U, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF_NORMED); |
||||
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF_NORMED); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCOEFF_NORMED 8U")) return; |
||||
|
||||
gen(image, n, m, CV_32F, cn); |
||||
gen(templ, h, w, CV_32F, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF); |
||||
F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "SQDIFF 32F")) return; |
||||
|
||||
gen(image, n, m, CV_32F, cn); |
||||
gen(templ, h, w, CV_32F, cn); |
||||
F(t = clock();) |
||||
matchTemplate(image, templ, dst_gold, CV_TM_CCORR); |
||||
F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) |
||||
F(cout << "cpu:" << clock() - t << endl;) |
||||
F(t = clock();) |
||||
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR); |
||||
F(cout << "gpu_block: " << clock() - t << endl;) |
||||
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "CCORR 32F")) return; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void gen(Mat& a, int rows, int cols, int depth, int cn) |
||||
{ |
||||
RNG rng; |
||||
a.create(rows, cols, CV_MAKETYPE(depth, cn)); |
||||
if (depth == CV_8U) |
||||
rng.fill(a, RNG::UNIFORM, Scalar::all(1), Scalar::all(10)); |
||||
else if (depth == CV_32F) |
||||
rng.fill(a, RNG::UNIFORM, Scalar::all(0.001f), Scalar::all(1.f)); |
||||
} |
||||
|
||||
bool check(const Mat& a, const Mat& b, float max_err, const string& method="") |
||||
{ |
||||
if (a.size() != b.size()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad size, method=%s\n", method.c_str()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
|
||||
//for (int i = 0; i < a.rows; ++i)
|
||||
//{
|
||||
// for (int j = 0; j < a.cols; ++j)
|
||||
// {
|
||||
// float a_ = a.at<float>(i, j);
|
||||
// float b_ = b.at<float>(i, j);
|
||||
// if (fabs(a_ - b_) > max_err)
|
||||
// {
|
||||
// ts->printf(cvtest::TS::CONSOLE, "a=%f, b=%f, i=%d, j=%d\n", a_, b_, i, j);
|
||||
// cin.get();
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
float err = (float)norm(a, b, NORM_INF); |
||||
if (err > max_err) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad accuracy: %f, method=%s\n", err, method.c_str()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return false; |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
}; |
||||
|
||||
TEST(matchTemplate, accuracy) { CV_GpuMatchTemplateTest test; test.safe_run(); } |
||||
|
||||
struct CV_GpuMatchTemplateFindPatternInBlackTest: cvtest::BaseTest
|
||||
{ |
||||
CV_GpuMatchTemplateFindPatternInBlackTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
if (!double_ok) |
||||
{ |
||||
// For sqrIntegral
|
||||
ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
Mat image = imread(std::string(ts->get_data_path()) + "matchtemplate/black.png"); |
||||
if (image.empty()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path()) |
||||
+ "matchtemplate/black.png").c_str()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
Mat pattern = imread(std::string(ts->get_data_path()) + "matchtemplate/cat.png"); |
||||
if (pattern.empty()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path()) |
||||
+ "matchtemplate/cat.png").c_str()); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
gpu::GpuMat d_image(image); |
||||
gpu::GpuMat d_pattern(pattern); |
||||
gpu::GpuMat d_result; |
||||
|
||||
double maxValue; |
||||
Point maxLoc; |
||||
Point maxLocGold(284, 12); |
||||
|
||||
gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCOEFF_NORMED); |
||||
gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc ); |
||||
if (maxLoc != maxLocGold) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCOEFF_NORMED): %d %d, must be at: %d %d", |
||||
maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
|
||||
gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCORR_NORMED); |
||||
gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc ); |
||||
if (maxLoc != maxLocGold) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCORR_NORMED): %d %d, must be at: %d %d", |
||||
maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
}; |
||||
|
||||
TEST(matchTemplate, find_pattern_in_black) { CV_GpuMatchTemplateFindPatternInBlackTest test; test.safe_run(); } |
@ -0,0 +1,614 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// merge
|
||||
|
||||
struct Merge : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> > |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
|
||||
cv::Size size; |
||||
std::vector<cv::Mat> src; |
||||
|
||||
cv::Mat dst_gold; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = std::tr1::get<0>(GetParam()); |
||||
type = std::tr1::get<1>(GetParam()); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); |
||||
|
||||
int depth = CV_MAT_DEPTH(type); |
||||
int num_channels = CV_MAT_CN(type); |
||||
src.reserve(num_channels); |
||||
for (int i = 0; i < num_channels; ++i) |
||||
src.push_back(cv::Mat(size, depth, cv::Scalar::all(i)));
|
||||
|
||||
cv::merge(src, dst_gold); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(Merge, Accuracy) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
ASSERT_NO_THROW( |
||||
std::vector<cv::gpu::GpuMat> dev_src; |
||||
cv::gpu::GpuMat dev_dst; |
||||
|
||||
for (size_t i = 0; i < src.size(); ++i) |
||||
dev_src.push_back(cv::gpu::GpuMat(src[i])); |
||||
|
||||
cv::gpu::merge(dev_src, dev_dst);
|
||||
|
||||
dev_dst.download(dst); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, Merge, testing::Combine( |
||||
testing::ValuesIn(devices()),
|
||||
testing::ValuesIn(all_types()))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// split
|
||||
|
||||
struct Split : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> > |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
|
||||
cv::Size size; |
||||
cv::Mat src; |
||||
|
||||
std::vector<cv::Mat> dst_gold; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = std::tr1::get<0>(GetParam()); |
||||
type = std::tr1::get<1>(GetParam()); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); |
||||
|
||||
src.create(size, type); |
||||
src.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0)); |
||||
cv::split(src, dst_gold); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(Split, Accuracy) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
std::vector<cv::Mat> dst; |
||||
|
||||
ASSERT_NO_THROW( |
||||
std::vector<cv::gpu::GpuMat> dev_dst; |
||||
cv::gpu::split(cv::gpu::GpuMat(src), dev_dst); |
||||
|
||||
dst.resize(dev_dst.size()); |
||||
for (size_t i = 0; i < dev_dst.size(); ++i) |
||||
dev_dst[i].download(dst[i]); |
||||
); |
||||
|
||||
ASSERT_EQ(dst_gold.size(), dst.size()); |
||||
|
||||
for (size_t i = 0; i < dst_gold.size(); ++i) |
||||
{ |
||||
EXPECT_MAT_NEAR(dst_gold[i], dst[i], 0.0); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, Split, testing::Combine( |
||||
testing::ValuesIn(devices()),
|
||||
testing::ValuesIn(all_types()))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// split_merge_consistency
|
||||
|
||||
struct SplitMerge : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> > |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
|
||||
cv::Size size; |
||||
cv::Mat orig; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = std::tr1::get<0>(GetParam()); |
||||
type = std::tr1::get<1>(GetParam()); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); |
||||
|
||||
orig.create(size, type); |
||||
orig.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0)); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(SplitMerge, Consistency) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
cv::Mat final; |
||||
|
||||
ASSERT_NO_THROW( |
||||
std::vector<cv::gpu::GpuMat> dev_vec; |
||||
cv::gpu::GpuMat dev_final; |
||||
|
||||
cv::gpu::split(cv::gpu::GpuMat(orig), dev_vec);
|
||||
cv::gpu::merge(dev_vec, dev_final); |
||||
|
||||
dev_final.download(final); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(orig, final, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SplitMerge, testing::Combine( |
||||
testing::ValuesIn(devices()),
|
||||
testing::ValuesIn(all_types()))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// setTo
|
||||
|
||||
struct SetTo : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> > |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
|
||||
cv::Size size; |
||||
cv::Mat mat_gold; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = std::tr1::get<0>(GetParam()); |
||||
type = std::tr1::get<1>(GetParam()); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); |
||||
|
||||
mat_gold.create(size, type); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(SetTo, Zero) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
static cv::Scalar zero = cv::Scalar::all(0); |
||||
|
||||
cv::Mat mat; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_mat(mat_gold); |
||||
|
||||
mat_gold.setTo(zero); |
||||
dev_mat.setTo(zero); |
||||
|
||||
dev_mat.download(mat); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0); |
||||
} |
||||
|
||||
TEST_P(SetTo, SameVal) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
static cv::Scalar s = cv::Scalar::all(1); |
||||
|
||||
cv::Mat mat; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_mat(mat_gold); |
||||
|
||||
mat_gold.setTo(s); |
||||
dev_mat.setTo(s); |
||||
|
||||
dev_mat.download(mat); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0); |
||||
} |
||||
|
||||
TEST_P(SetTo, DifferentVal) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
static cv::Scalar s = cv::Scalar(1, 2, 3, 4); |
||||
|
||||
cv::Mat mat; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_mat(mat_gold); |
||||
|
||||
mat_gold.setTo(s); |
||||
dev_mat.setTo(s); |
||||
|
||||
dev_mat.download(mat); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0); |
||||
} |
||||
|
||||
TEST_P(SetTo, Masked) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
static cv::Scalar s = cv::Scalar(1, 2, 3, 4); |
||||
|
||||
cv::Mat mat; |
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
cv::Mat mask = cvtest::randomMat(rng, mat.size(), CV_8UC1, 0.0, 1.5, false); |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_mat(mat_gold); |
||||
|
||||
mat_gold.setTo(s, mask); |
||||
dev_mat.setTo(s, cv::gpu::GpuMat(mask)); |
||||
|
||||
dev_mat.download(mat); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(mat_gold, mat, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SetTo, testing::Combine( |
||||
testing::ValuesIn(devices()),
|
||||
testing::ValuesIn(all_types()))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// copyTo
|
||||
|
||||
struct CopyTo : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> > |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int type; |
||||
|
||||
cv::Size size; |
||||
cv::Mat src; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = std::tr1::get<0>(GetParam()); |
||||
type = std::tr1::get<1>(GetParam()); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); |
||||
|
||||
src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(CopyTo, WithoutMask) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
cv::Mat dst_gold; |
||||
src.copyTo(dst_gold); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_src(src); |
||||
|
||||
cv::gpu::GpuMat dev_dst; |
||||
|
||||
dev_src.copyTo(dev_dst); |
||||
|
||||
dev_dst.download(dst); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
||||
} |
||||
|
||||
TEST_P(CopyTo, Masked) |
||||
{ |
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(type); |
||||
PRINT_PARAM(size); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
cv::Mat mask = cvtest::randomMat(rng, src.size(), CV_8UC1, 0.0, 1.5, false); |
||||
|
||||
cv::Mat dst_gold; |
||||
src.copyTo(dst_gold, mask); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_src(src); |
||||
|
||||
cv::gpu::GpuMat dev_dst; |
||||
|
||||
dev_src.copyTo(dev_dst, cv::gpu::GpuMat(mask)); |
||||
|
||||
dev_dst.download(dst); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, CopyTo, testing::Combine( |
||||
testing::ValuesIn(devices()),
|
||||
testing::ValuesIn(all_types()))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// convertTo
|
||||
|
||||
struct ConvertTo : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> > |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
int depth1; |
||||
int depth2; |
||||
|
||||
cv::Size size; |
||||
cv::Mat src; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = std::tr1::get<0>(GetParam()); |
||||
depth1 = std::tr1::get<1>(GetParam()); |
||||
depth2 = std::tr1::get<2>(GetParam()); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); |
||||
|
||||
src = cvtest::randomMat(rng, size, depth1, 0.0, 127.0, false); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(ConvertTo, WithoutScaling) |
||||
{ |
||||
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(depth1); |
||||
PRINT_TYPE(depth2); |
||||
PRINT_PARAM(size); |
||||
|
||||
cv::Mat dst_gold; |
||||
src.convertTo(dst_gold, depth2); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_src(src); |
||||
|
||||
cv::gpu::GpuMat dev_dst; |
||||
|
||||
dev_src.convertTo(dev_dst, depth2); |
||||
|
||||
dev_dst.download(dst); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
||||
} |
||||
|
||||
TEST_P(ConvertTo, WithScaling) |
||||
{ |
||||
if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) |
||||
return; |
||||
|
||||
PRINT_PARAM(devInfo); |
||||
PRINT_TYPE(depth1); |
||||
PRINT_TYPE(depth2); |
||||
PRINT_PARAM(size); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
const double a = rng.uniform(0.0, 1.0); |
||||
const double b = rng.uniform(-10.0, 10.0); |
||||
|
||||
PRINT_PARAM(a); |
||||
PRINT_PARAM(b); |
||||
|
||||
cv::Mat dst_gold; |
||||
src.convertTo(dst_gold, depth2, a, b); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::GpuMat dev_src(src); |
||||
|
||||
cv::gpu::GpuMat dev_dst; |
||||
|
||||
dev_src.convertTo(dev_dst, depth2, a, b); |
||||
|
||||
dev_dst.download(dst); |
||||
); |
||||
|
||||
const double eps = depth2 < CV_32F ? 1 : 1e-4; |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, eps); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, testing::Combine( |
||||
testing::ValuesIn(devices()),
|
||||
testing::ValuesIn(types(CV_8U, CV_64F, 1, 1)),
|
||||
testing::ValuesIn(types(CV_8U, CV_64F, 1, 1)))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// async
|
||||
|
||||
struct Async : testing::TestWithParam<cv::gpu::DeviceInfo> |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo; |
||||
|
||||
cv::gpu::CudaMem src; |
||||
|
||||
cv::Mat dst_gold0; |
||||
cv::Mat dst_gold1; |
||||
|
||||
virtual void SetUp()
|
||||
{ |
||||
devInfo = GetParam(); |
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
||||
|
||||
int rows = rng.uniform(100, 200); |
||||
int cols = rng.uniform(100, 200); |
||||
|
||||
src = cv::gpu::CudaMem(cv::Mat::zeros(rows, cols, CV_8UC1));
|
||||
|
||||
dst_gold0 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(255)); |
||||
dst_gold1 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(128)); |
||||
} |
||||
}; |
||||
|
||||
TEST_P(Async, Accuracy) |
||||
{ |
||||
PRINT_PARAM(devInfo); |
||||
|
||||
cv::Mat dst0, dst1; |
||||
|
||||
ASSERT_NO_THROW( |
||||
cv::gpu::CudaMem cpudst0; |
||||
cv::gpu::CudaMem cpudst1; |
||||
|
||||
cv::gpu::GpuMat gpusrc; |
||||
cv::gpu::GpuMat gpudst0; |
||||
cv::gpu::GpuMat gpudst1(src.rows, src.cols, CV_8UC1); |
||||
|
||||
cv::gpu::Stream stream0; |
||||
cv::gpu::Stream stream1; |
||||
|
||||
stream0.enqueueUpload(src, gpusrc); |
||||
cv::gpu::bitwise_not(gpusrc, gpudst0, cv::gpu::GpuMat(), stream0); |
||||
stream0.enqueueDownload(gpudst0, cpudst0); |
||||
|
||||
stream1.enqueueMemSet(gpudst1, cv::Scalar::all(128)); |
||||
stream1.enqueueDownload(gpudst1, cpudst1); |
||||
|
||||
stream0.waitForCompletion(); |
||||
stream1.waitForCompletion(); |
||||
|
||||
dst0 = cpudst0.createMatHeader(); |
||||
dst1 = cpudst1.createMatHeader(); |
||||
); |
||||
|
||||
EXPECT_MAT_NEAR(dst_gold0, dst0, 0.0); |
||||
EXPECT_MAT_NEAR(dst_gold1, dst1, 0.0); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, Async, testing::ValuesIn(devices())); |
||||
|
||||
#endif // HAVE_CUDA
|
@ -1,233 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include <iostream> |
||||
#include <string> |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
|
||||
struct CV_GpuMeanShiftTest : public cvtest::BaseTest |
||||
{ |
||||
CV_GpuMeanShiftTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12); |
||||
if (!cc12_ok) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
int spatialRad = 30; |
||||
int colorRad = 30; |
||||
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "meanshift/cones.png"); |
||||
cv::Mat img_template;
|
||||
|
||||
if (cv::gpu::TargetArchs::builtWith(cv::gpu::FEATURE_SET_COMPUTE_20) && |
||||
cv::gpu::DeviceInfo().supports(cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
img_template = cv::imread(std::string(ts->get_data_path()) + "meanshift/con_result.png"); |
||||
else |
||||
img_template = cv::imread(std::string(ts->get_data_path()) + "meanshift/con_result_CC1X.png"); |
||||
|
||||
if (img.empty() || img_template.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
cv::Mat rgba; |
||||
cvtColor(img, rgba, CV_BGR2BGRA); |
||||
|
||||
|
||||
cv::gpu::GpuMat res; |
||||
cv::gpu::meanShiftFiltering( cv::gpu::GpuMat(rgba), res, spatialRad, colorRad ); |
||||
|
||||
if (res.type() != CV_8UC4) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
|
||||
cv::Mat result; |
||||
res.download(result); |
||||
|
||||
uchar maxDiff = 0; |
||||
for (int j = 0; j < result.rows; ++j) |
||||
{ |
||||
const uchar* res_line = result.ptr<uchar>(j); |
||||
const uchar* ref_line = img_template.ptr<uchar>(j); |
||||
|
||||
for (int i = 0; i < result.cols; ++i) |
||||
{ |
||||
for (int k = 0; k < 3; ++k) |
||||
{ |
||||
const uchar& ch1 = res_line[result.channels()*i + k]; |
||||
const uchar& ch2 = ref_line[img_template.channels()*i + k]; |
||||
uchar diff = static_cast<uchar>(abs(ch1 - ch2)); |
||||
if (maxDiff < diff) |
||||
maxDiff = diff; |
||||
} |
||||
} |
||||
} |
||||
if (maxDiff > 0) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nMeanShift maxDiff = %d\n", maxDiff); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
|
||||
}; |
||||
|
||||
TEST(meanShift, accuracy) { CV_GpuMeanShiftTest test; test.safe_run(); } |
||||
|
||||
struct CV_GpuMeanShiftProcTest : public cvtest::BaseTest |
||||
{ |
||||
CV_GpuMeanShiftProcTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12); |
||||
if (!cc12_ok) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
int spatialRad = 30; |
||||
int colorRad = 30; |
||||
|
||||
cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "meanshift/cones.png"); |
||||
|
||||
if (img.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
cv::Mat rgba; |
||||
cvtColor(img, rgba, CV_BGR2BGRA); |
||||
|
||||
cv::gpu::GpuMat h_rmap_filtered; |
||||
cv::gpu::meanShiftFiltering( cv::gpu::GpuMat(rgba), h_rmap_filtered, spatialRad, colorRad ); |
||||
|
||||
cv::gpu::GpuMat d_rmap; |
||||
cv::gpu::GpuMat d_spmap; |
||||
cv::gpu::meanShiftProc( cv::gpu::GpuMat(rgba), d_rmap, d_spmap, spatialRad, colorRad ); |
||||
|
||||
if (d_rmap.type() != CV_8UC4) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
|
||||
cv::Mat rmap_filtered; |
||||
h_rmap_filtered.download(rmap_filtered); |
||||
|
||||
cv::Mat rmap; |
||||
d_rmap.download(rmap); |
||||
|
||||
uchar maxDiff = 0; |
||||
for (int j = 0; j < rmap_filtered.rows; ++j) |
||||
{ |
||||
const uchar* res_line = rmap_filtered.ptr<uchar>(j); |
||||
const uchar* ref_line = rmap.ptr<uchar>(j); |
||||
|
||||
for (int i = 0; i < rmap_filtered.cols; ++i) |
||||
{ |
||||
for (int k = 0; k < 3; ++k) |
||||
{ |
||||
const uchar& ch1 = res_line[rmap_filtered.channels()*i + k]; |
||||
const uchar& ch2 = ref_line[rmap.channels()*i + k]; |
||||
uchar diff = static_cast<uchar>(abs(ch1 - ch2)); |
||||
if (maxDiff < diff) |
||||
maxDiff = diff; |
||||
} |
||||
} |
||||
} |
||||
if (maxDiff > 0) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nMeanShiftProc maxDiff = %d\n", maxDiff); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
cv::Mat spmap; |
||||
d_spmap.download(spmap); |
||||
|
||||
cv::Mat spmap_template; |
||||
cv::FileStorage fs; |
||||
|
||||
if (cv::gpu::TargetArchs::builtWith(cv::gpu::FEATURE_SET_COMPUTE_20) && |
||||
cv::gpu::DeviceInfo().supports(cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
fs.open(std::string(ts->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ); |
||||
else |
||||
fs.open(std::string(ts->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ); |
||||
fs["spmap"] >> spmap_template; |
||||
|
||||
for (int y = 0; y < spmap.rows; ++y) { |
||||
for (int x = 0; x < spmap.cols; ++x) { |
||||
cv::Point_<short> expected = spmap_template.at<cv::Point_<short> >(y, x); |
||||
cv::Point_<short> actual = spmap.at<cv::Point_<short> >(y, x); |
||||
int diff = (expected - actual).dot(expected - actual); |
||||
if (actual != expected) { |
||||
ts->printf(cvtest::TS::LOG, "\nMeanShiftProc SpMap is bad, diff=%d\n", diff); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
|
||||
}; |
||||
|
||||
TEST(meanShiftProc, accuracy) { CV_GpuMeanShiftProcTest test; test.safe_run(); } |
@ -1,122 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iostream> |
||||
#include <string> |
||||
#include <iosfwd> |
||||
#include "test_precomp.hpp" |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace std; |
||||
|
||||
struct CV_GpuMeanShiftSegmentationTest : public cvtest::BaseTest { |
||||
CV_GpuMeanShiftSegmentationTest() {} |
||||
|
||||
void run(int)
|
||||
{ |
||||
bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12); |
||||
if (!cc12_ok) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
Mat img_rgb = imread(string(ts->get_data_path()) + "meanshift/cones.png"); |
||||
if (img_rgb.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
Mat img; |
||||
cvtColor(img_rgb, img, CV_BGR2BGRA); |
||||
|
||||
|
||||
for (int minsize = 0; minsize < 2000; minsize = (minsize + 1) * 4) |
||||
{ |
||||
stringstream path; |
||||
path << ts->get_data_path() << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize; |
||||
if (TargetArchs::builtWith(FEATURE_SET_COMPUTE_20) && DeviceInfo().supports(FEATURE_SET_COMPUTE_20)) |
||||
path << ".png"; |
||||
else |
||||
path << "_CC1X.png"; |
||||
|
||||
Mat dst; |
||||
meanShiftSegmentation((GpuMat)img, dst, 10, 10, minsize); |
||||
Mat dst_rgb; |
||||
cvtColor(dst, dst_rgb, CV_BGRA2BGR); |
||||
|
||||
//imwrite(path.str(), dst_rgb);
|
||||
Mat dst_ref = imread(path.str()); |
||||
if (dst_ref.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
if (CheckSimilarity(dst_rgb, dst_ref, 1e-3f) != cvtest::TS::OK) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\ndiffers from image *minsize%d.png\n", minsize); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
||||
} |
||||
} |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
}
|
||||
|
||||
int CheckSimilarity(const Mat& m1, const Mat& m2, float max_err) |
||||
{ |
||||
Mat diff; |
||||
cv::matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED); |
||||
|
||||
float err = abs(diff.at<float>(0, 0) - 1.f); |
||||
|
||||
if (err > max_err) |
||||
return cvtest::TS::FAIL_INVALID_OUTPUT; |
||||
|
||||
return cvtest::TS::OK; |
||||
} |
||||
|
||||
|
||||
}; |
||||
|
||||
|
||||
TEST(meanShiftSegmentation, regression) { CV_GpuMeanShiftSegmentationTest test; test.safe_run(); } |
@ -1,84 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
struct CV_AsyncGpuMatTest : public cvtest::BaseTest |
||||
{ |
||||
CV_AsyncGpuMatTest() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
CudaMem src(Mat::zeros(100, 100, CV_8UC1)); |
||||
|
||||
GpuMat gpusrc; |
||||
GpuMat gpudst0, gpudst1(100, 100, CV_8UC1); |
||||
|
||||
CudaMem cpudst0; |
||||
CudaMem cpudst1; |
||||
|
||||
Stream stream0, stream1; |
||||
|
||||
stream0.enqueueUpload(src, gpusrc); |
||||
bitwise_not(gpusrc, gpudst0, GpuMat(), stream0); |
||||
stream0.enqueueDownload(gpudst0, cpudst0); |
||||
|
||||
stream1.enqueueMemSet(gpudst1, Scalar::all(128)); |
||||
stream1.enqueueDownload(gpudst1, cpudst1); |
||||
|
||||
stream0.waitForCompletion(); |
||||
stream1.waitForCompletion(); |
||||
|
||||
Mat cpu_gold0(100, 100, CV_8UC1, Scalar::all(255)); |
||||
Mat cpu_gold1(100, 100, CV_8UC1, Scalar::all(128)); |
||||
|
||||
if (norm((Mat)cpudst0, cpu_gold0, NORM_INF) > 0 || norm((Mat)cpudst1, cpu_gold1, NORM_INF) > 0) |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
}; |
||||
|
||||
TEST(GpuMat, async) { CV_AsyncGpuMatTest test; test.safe_run(); } |
@ -1,110 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#include <fstream> |
||||
#include <iterator> |
||||
#include <numeric> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
using namespace gpu; |
||||
|
||||
class CV_GpuMatOpConvertToTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_GpuMatOpConvertToTest() {} |
||||
~CV_GpuMatOpConvertToTest() {} |
||||
|
||||
protected: |
||||
void run(int); |
||||
}; |
||||
|
||||
void CV_GpuMatOpConvertToTest::run(int /* start_from */) |
||||
{ |
||||
const Size img_size(67, 35); |
||||
|
||||
const char* types_str[] = {"CV_8U", "CV_8S", "CV_16U", "CV_16S", "CV_32S", "CV_32F", "CV_64F"}; |
||||
|
||||
bool passed = true; |
||||
int lastType = CV_32F; |
||||
|
||||
if (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)) |
||||
lastType = CV_64F; |
||||
|
||||
for (int i = 0; i <= lastType && passed; ++i) |
||||
{ |
||||
for (int j = 0; j <= lastType && passed; ++j) |
||||
{ |
||||
for (int c = 1; c < 5 && passed; ++c) |
||||
{ |
||||
const int src_type = CV_MAKETYPE(i, c); |
||||
const int dst_type = j; |
||||
|
||||
cv::RNG& rng = ts->get_rng(); |
||||
|
||||
Mat cpumatsrc(img_size, src_type); |
||||
rng.fill(cpumatsrc, RNG::UNIFORM, Scalar::all(0), Scalar::all(300)); |
||||
|
||||
GpuMat gpumatsrc(cpumatsrc); |
||||
Mat cpumatdst; |
||||
GpuMat gpumatdst; |
||||
|
||||
cpumatsrc.convertTo(cpumatdst, dst_type, 0.5, 3.0); |
||||
gpumatsrc.convertTo(gpumatdst, dst_type, 0.5, 3.0); |
||||
|
||||
double r = norm(cpumatdst, (Mat)gpumatdst, NORM_INF); |
||||
if (r > 1) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, |
||||
"\nFAILED: SRC_TYPE=%sC%d DST_TYPE=%s NORM = %f\n", |
||||
types_str[i], c, types_str[j], r); |
||||
passed = false; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
ts->set_failed_test_info(passed ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC); |
||||
} |
||||
|
||||
TEST(GpuMat_convertTo, accuracy) { CV_GpuMatOpConvertToTest test; test.safe_run(); } |
@ -1,145 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include <fstream> |
||||
#include <iterator> |
||||
#include <numeric> |
||||
#include <iomanip> // for cout << setw() |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
using namespace gpu; |
||||
|
||||
class CV_GpuMatOpCopyToTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_GpuMatOpCopyToTest() |
||||
{ |
||||
rows = 234; |
||||
cols = 123; |
||||
} |
||||
~CV_GpuMatOpCopyToTest() {} |
||||
|
||||
protected: |
||||
void run(int); |
||||
template <typename T> |
||||
void print_mat(const T & mat, const std::string & name) const; |
||||
bool compare_matrix(cv::Mat & cpumat, gpu::GpuMat & gpumat); |
||||
|
||||
private: |
||||
int rows; |
||||
int cols; |
||||
}; |
||||
|
||||
template<typename T> |
||||
void CV_GpuMatOpCopyToTest::print_mat(const T & mat, const std::string & name) const { cv::imshow(name, mat); } |
||||
|
||||
bool CV_GpuMatOpCopyToTest::compare_matrix(cv::Mat & cpumat, gpu::GpuMat & gpumat) |
||||
{ |
||||
Mat cmat(cpumat.size(), cpumat.type(), Scalar::all(0)); |
||||
GpuMat gmat(cmat); |
||||
|
||||
Mat cpumask(cpumat.size(), CV_8U); |
||||
|
||||
cv::RNG& rng = ts->get_rng(); |
||||
|
||||
rng.fill(cpumask, RNG::NORMAL, Scalar::all(0), Scalar::all(127)); |
||||
|
||||
threshold(cpumask, cpumask, 0, 127, THRESH_BINARY); |
||||
|
||||
GpuMat gpumask(cpumask); |
||||
|
||||
//int64 time = getTickCount();
|
||||
cpumat.copyTo(cmat, cpumask); |
||||
//int64 time1 = getTickCount();
|
||||
gpumat.copyTo(gmat, gpumask); |
||||
//int64 time2 = getTickCount();
|
||||
|
||||
//std::cout << "\ntime cpu: " << std::fixed << std::setprecision(12) << 1.0 / double((time1 - time) / (double)getTickFrequency());
|
||||
//std::cout << "\ntime gpu: " << std::fixed << std::setprecision(12) << 1.0 / double((time2 - time1) / (double)getTickFrequency());
|
||||
//std::cout << "\n";
|
||||
|
||||
#ifdef PRINT_MATRIX |
||||
print_mat(cmat, "cpu mat"); |
||||
print_mat(gmat, "gpu mat"); |
||||
print_mat(cpumask, "cpu mask"); |
||||
print_mat(gpumask, "gpu mask"); |
||||
cv::waitKey(0); |
||||
#endif |
||||
|
||||
double ret = norm(cmat, (Mat)gmat); |
||||
|
||||
if (ret < 1.0) |
||||
return true; |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret); |
||||
return false; |
||||
} |
||||
} |
||||
|
||||
void CV_GpuMatOpCopyToTest::run( int /* start_from */) |
||||
{ |
||||
bool is_test_good = true; |
||||
|
||||
int lastType = CV_32F; |
||||
|
||||
if (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)) |
||||
lastType = CV_64F; |
||||
|
||||
for (int i = 0 ; i <= lastType; i++) |
||||
{ |
||||
Mat cpumat(rows, cols, i); |
||||
cpumat.setTo(Scalar::all(127)); |
||||
|
||||
GpuMat gpumat(cpumat); |
||||
|
||||
is_test_good &= compare_matrix(cpumat, gpumat); |
||||
} |
||||
|
||||
if (is_test_good == true) |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
} |
||||
|
||||
TEST(GpuMat_copyTo, accuracy) { CV_GpuMatOpCopyToTest test; test.safe_run(); } |
@ -1,123 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
using namespace gpu; |
||||
|
||||
class CV_GpuMatOpSetToTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_GpuMatOpSetToTest(); |
||||
~CV_GpuMatOpSetToTest() {} |
||||
|
||||
protected: |
||||
void run(int); |
||||
|
||||
bool testSetTo(cv::Mat& cpumat, gpu::GpuMat& gpumat, const cv::Mat& cpumask = cv::Mat(), const cv::gpu::GpuMat& gpumask = cv::gpu::GpuMat()); |
||||
|
||||
private: |
||||
int rows; |
||||
int cols; |
||||
Scalar s; |
||||
}; |
||||
|
||||
CV_GpuMatOpSetToTest::CV_GpuMatOpSetToTest() |
||||
{ |
||||
rows = 35; |
||||
cols = 67; |
||||
|
||||
s.val[0] = 127.0; |
||||
s.val[1] = 127.0; |
||||
s.val[2] = 127.0; |
||||
s.val[3] = 127.0; |
||||
} |
||||
|
||||
bool CV_GpuMatOpSetToTest::testSetTo(cv::Mat& cpumat, gpu::GpuMat& gpumat, const cv::Mat& cpumask, const cv::gpu::GpuMat& gpumask) |
||||
{ |
||||
cpumat.setTo(s, cpumask); |
||||
gpumat.setTo(s, gpumask); |
||||
|
||||
double ret = norm(cpumat, (Mat)gpumat, NORM_INF); |
||||
|
||||
if (ret < std::numeric_limits<double>::epsilon()) |
||||
return true; |
||||
else |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret); |
||||
return false; |
||||
} |
||||
} |
||||
|
||||
void CV_GpuMatOpSetToTest::run( int /* start_from */) |
||||
{ |
||||
bool is_test_good = true; |
||||
|
||||
cv::Mat cpumask(rows, cols, CV_8UC1); |
||||
cv::RNG& rng = ts->get_rng(); |
||||
rng.fill(cpumask, RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar(1.5)); |
||||
cv::gpu::GpuMat gpumask(cpumask); |
||||
|
||||
int lastType = CV_32F; |
||||
|
||||
if (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)) |
||||
lastType = CV_64F; |
||||
|
||||
for (int i = 0; i <= lastType; i++) |
||||
{ |
||||
for (int cn = 1; cn <= 4; ++cn) |
||||
{ |
||||
int mat_type = CV_MAKETYPE(i, cn); |
||||
Mat cpumat(rows, cols, mat_type, Scalar::all(0)); |
||||
GpuMat gpumat(cpumat); |
||||
is_test_good &= testSetTo(cpumat, gpumat, cpumask, gpumask); |
||||
} |
||||
} |
||||
|
||||
if (is_test_good == true) |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
} |
||||
|
||||
TEST(GpuMat_setTo, accuracy) { CV_GpuMatOpSetToTest test; test.safe_run(); } |
@ -1 +1,42 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
@ -1,13 +1,62 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__ |
||||
#define __OPENCV_TEST_PRECOMP_HPP__ |
||||
|
||||
#include <iostream> |
||||
#include <cmath> |
||||
#include <cstdio> |
||||
#include <fstream> |
||||
#include <sstream> |
||||
#include <limits> |
||||
#include <string> |
||||
#include <algorithm> |
||||
#include <iterator> |
||||
#include "cvconfig.h" |
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/calib3d/calib3d.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include "opencv2/ts/ts.hpp" |
||||
#include "opencv2/gpu/gpu.hpp" |
||||
#include "test_gpu_base.hpp" |
||||
|
||||
#endif |
||||
|
@ -1,312 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Merge
|
||||
|
||||
struct CV_MergeTest : public cvtest::BaseTest |
||||
{ |
||||
void can_merge(size_t rows, size_t cols); |
||||
void can_merge_submatrixes(size_t rows, size_t cols); |
||||
void run(int); |
||||
}; |
||||
|
||||
|
||||
void CV_MergeTest::can_merge(size_t rows, size_t cols) |
||||
{ |
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
size_t depth_end = double_ok ? CV_64F : CV_32F; |
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
||||
{ |
||||
vector<Mat> src; |
||||
for (size_t i = 0; i < num_channels; ++i) |
||||
src.push_back(Mat(rows, cols, depth, Scalar::all(static_cast<double>(i)))); |
||||
|
||||
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels));
|
||||
|
||||
cv::merge(src, dst);
|
||||
|
||||
vector<gpu::GpuMat> dev_src; |
||||
for (size_t i = 0; i < num_channels; ++i) |
||||
dev_src.push_back(gpu::GpuMat(src[i])); |
||||
|
||||
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels)); |
||||
cv::gpu::merge(dev_src, dev_dst);
|
||||
|
||||
Mat host_dst = dev_dst; |
||||
|
||||
double err = norm(dst, host_dst, NORM_INF); |
||||
|
||||
if (err > 1e-3) |
||||
{ |
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void CV_MergeTest::can_merge_submatrixes(size_t rows, size_t cols) |
||||
{ |
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
size_t depth_end = double_ok ? CV_64F : CV_32F; |
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
||||
{ |
||||
vector<Mat> src; |
||||
for (size_t i = 0; i < num_channels; ++i)
|
||||
{ |
||||
Mat m(rows * 2, cols * 2, depth, Scalar::all(static_cast<double>(i))); |
||||
src.push_back(m(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols))); |
||||
} |
||||
|
||||
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels));
|
||||
|
||||
cv::merge(src, dst);
|
||||
|
||||
vector<gpu::GpuMat> dev_src; |
||||
for (size_t i = 0; i < num_channels; ++i) |
||||
dev_src.push_back(gpu::GpuMat(src[i])); |
||||
|
||||
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels)); |
||||
cv::gpu::merge(dev_src, dev_dst); |
||||
|
||||
Mat host_dst = dev_dst; |
||||
|
||||
double err = norm(dst, host_dst, NORM_INF); |
||||
|
||||
if (err > 1e-3) |
||||
{ |
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void CV_MergeTest::run(int)
|
||||
{ |
||||
can_merge(1, 1); |
||||
can_merge(1, 7); |
||||
can_merge(53, 7); |
||||
can_merge_submatrixes(1, 1); |
||||
can_merge_submatrixes(1, 7); |
||||
can_merge_submatrixes(53, 7); |
||||
} |
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Split
|
||||
|
||||
struct CV_SplitTest : public cvtest::BaseTest |
||||
{ |
||||
void can_split(size_t rows, size_t cols);
|
||||
void can_split_submatrix(size_t rows, size_t cols); |
||||
void run(int); |
||||
}; |
||||
|
||||
void CV_SplitTest::can_split(size_t rows, size_t cols) |
||||
{ |
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
size_t depth_end = double_ok ? CV_64F : CV_32F; |
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
||||
{ |
||||
Mat src(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
vector<Mat> dst; |
||||
cv::split(src, dst);
|
||||
|
||||
gpu::GpuMat dev_src(src); |
||||
vector<gpu::GpuMat> dev_dst; |
||||
cv::gpu::split(dev_src, dev_dst); |
||||
|
||||
if (dev_dst.size() != dst.size()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "Bad output sizes"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
} |
||||
|
||||
for (size_t i = 0; i < num_channels; ++i) |
||||
{ |
||||
Mat host_dst = dev_dst[i]; |
||||
double err = norm(dst[i], host_dst, NORM_INF); |
||||
|
||||
if (err > 1e-3) |
||||
{ |
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void CV_SplitTest::can_split_submatrix(size_t rows, size_t cols) |
||||
{ |
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
size_t depth_end = double_ok ? CV_64F : CV_32F; |
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
||||
{ |
||||
Mat src_data(rows * 2, cols * 2, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
Mat src(src_data(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols))); |
||||
vector<Mat> dst; |
||||
cv::split(src, dst);
|
||||
|
||||
gpu::GpuMat dev_src(src); |
||||
vector<gpu::GpuMat> dev_dst; |
||||
cv::gpu::split(dev_src, dev_dst); |
||||
|
||||
if (dev_dst.size() != dst.size()) |
||||
{ |
||||
ts->printf(cvtest::TS::CONSOLE, "Bad output sizes"); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
} |
||||
|
||||
for (size_t i = 0; i < num_channels; ++i) |
||||
{ |
||||
Mat host_dst = dev_dst[i]; |
||||
double err = norm(dst[i], host_dst, NORM_INF); |
||||
|
||||
if (err > 1e-3) |
||||
{ |
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void CV_SplitTest::run(int) |
||||
{ |
||||
can_split(1, 1); |
||||
can_split(1, 7); |
||||
can_split(7, 53); |
||||
can_split_submatrix(1, 1); |
||||
can_split_submatrix(1, 7); |
||||
can_split_submatrix(7, 53); |
||||
} |
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Split and merge
|
||||
|
||||
struct CV_SplitMergeTest : public cvtest::BaseTest |
||||
{ |
||||
void can_split_merge(size_t rows, size_t cols);
|
||||
void run(int); |
||||
}; |
||||
|
||||
void CV_SplitMergeTest::can_split_merge(size_t rows, size_t cols) { |
||||
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||||
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
||||
size_t depth_end = double_ok ? CV_64F : CV_32F; |
||||
|
||||
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
||||
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
||||
{ |
||||
Mat orig(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0));
|
||||
gpu::GpuMat dev_orig(orig); |
||||
vector<gpu::GpuMat> dev_vec; |
||||
cv::gpu::split(dev_orig, dev_vec); |
||||
|
||||
gpu::GpuMat dev_final(rows, cols, CV_MAKETYPE(depth, num_channels)); |
||||
cv::gpu::merge(dev_vec, dev_final); |
||||
|
||||
double err = cv::norm((Mat)dev_orig, (Mat)dev_final, NORM_INF); |
||||
if (err > 1e-3) |
||||
{ |
||||
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols);
|
||||
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void CV_SplitMergeTest::run(int)
|
||||
{ |
||||
can_split_merge(1, 1); |
||||
can_split_merge(1, 7); |
||||
can_split_merge(7, 53); |
||||
} |
||||
|
||||
|
||||
TEST(merge, accuracy) { CV_MergeTest test; test.safe_run(); } |
||||
TEST(split, accuracy) { CV_SplitTest test; test.safe_run(); } |
||||
TEST(split, merge_consistency) { CV_SplitMergeTest test; test.safe_run(); } |
@ -1,131 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
struct CV_GpuStereoBMTest : public cvtest::BaseTest |
||||
{ |
||||
void run_stress() |
||||
{
|
||||
RNG rng; |
||||
|
||||
for(int i = 0; i < 10; ++i) |
||||
{ |
||||
int winSize = cvRound(rng.uniform(2, 11)) * 2 + 1; |
||||
|
||||
for(int j = 0; j < 10; ++j) |
||||
{ |
||||
int ndisp = cvRound(rng.uniform(5, 32)) * 8; |
||||
|
||||
for(int s = 0; s < 10; ++s) |
||||
{ |
||||
int w = cvRound(rng.uniform(1024, 2048)); |
||||
int h = cvRound(rng.uniform(768, 1152)); |
||||
|
||||
for(int p = 0; p < 2; ++p) |
||||
{ |
||||
//int winSize = winsz[i];
|
||||
//int disp = disps[j];
|
||||
Size imgSize(w, h);//res[s];
|
||||
int preset = p; |
||||
|
||||
printf("Preset = %d, nidsp = %d, winsz = %d, width = %d, height = %d\n", p, ndisp, winSize, imgSize.width, imgSize.height); |
||||
|
||||
GpuMat l(imgSize, CV_8U); |
||||
GpuMat r(imgSize, CV_8U); |
||||
|
||||
GpuMat disparity; |
||||
StereoBM_GPU bm(preset, ndisp, winSize); |
||||
bm(l, r, disparity); |
||||
|
||||
|
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void run(int ) |
||||
{ |
||||
/*run_stress();
|
||||
return;*/ |
||||
|
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png", 0); |
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png", 0); |
||||
cv::Mat img_reference = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-disp.png", 0); |
||||
|
||||
if (img_l.empty() || img_r.empty() || img_reference.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
cv::gpu::GpuMat disp; |
||||
cv::gpu::StereoBM_GPU bm(0, 128, 19); |
||||
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp); |
||||
|
||||
disp.convertTo(disp, img_reference.type()); |
||||
double norm = cv::norm((Mat)disp, img_reference, cv::NORM_INF); |
||||
|
||||
//cv::imwrite(std::string(ts->get_data_path()) + "stereobm/aloe-disp.png", disp);
|
||||
|
||||
/*cv::imshow("disp", disp);
|
||||
cv::imshow("img_reference", img_reference); |
||||
|
||||
cv::Mat diff = (cv::Mat)disp - (cv::Mat)img_reference; |
||||
cv::imshow("diff", diff); |
||||
cv::waitKey();*/ |
||||
|
||||
if (norm >= 100) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nStereoBM norm = %f\n", norm); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
}; |
||||
|
||||
TEST(StereoBM, regression) { CV_GpuStereoBMTest test; test.safe_run(); } |
@ -1,86 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
struct CV_AsyncStereoBMTest : public cvtest::BaseTest |
||||
{ |
||||
void run( int /* start_from */) |
||||
{ |
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-L.png", 0); |
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-R.png", 0); |
||||
cv::Mat img_reference = cv::imread(std::string(ts->get_data_path()) + "stereobm/aloe-disp.png", 0); |
||||
|
||||
if (img_l.empty() || img_r.empty() || img_reference.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
cv::gpu::GpuMat disp; |
||||
cv::gpu::StereoBM_GPU bm(0, 128, 19); |
||||
|
||||
cv::gpu::Stream stream; |
||||
|
||||
for (size_t i = 0; i < 50; i++) |
||||
{ |
||||
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp, stream); |
||||
} |
||||
|
||||
stream.waitForCompletion(); |
||||
disp.convertTo(disp, img_reference.type()); |
||||
double norm = cv::norm((Mat)disp, img_reference, cv::NORM_INF); |
||||
|
||||
if (norm >= 100) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nStereoBM norm = %f\n", norm); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
}; |
||||
|
||||
TEST(StereoBM, async) { CV_AsyncStereoBMTest test; test.safe_run(); } |
@ -1,82 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
struct CV_GpuStereoBPTest : public cvtest::BaseTest |
||||
{ |
||||
void run(int) |
||||
{ |
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png"); |
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-R.png"); |
||||
cv::Mat img_template = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-disp.png", 0); |
||||
|
||||
if (img_l.empty() || img_r.empty() || img_template.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
{cv::Mat temp; cv::cvtColor(img_l, temp, CV_BGR2BGRA); cv::swap(temp, img_l);} |
||||
{cv::Mat temp; cv::cvtColor(img_r, temp, CV_BGR2BGRA); cv::swap(temp, img_r);} |
||||
|
||||
cv::gpu::StereoBeliefPropagation bpm(64, 8, 2, 25, 0.1f, 15, 1, CV_16S); |
||||
cv::gpu::GpuMat disp; |
||||
|
||||
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp); |
||||
|
||||
//cv::imwrite(std::string(ts->get_data_path()) + "stereobp/aloe-disp.png", disp);
|
||||
|
||||
disp.convertTo(disp, img_template.type()); |
||||
|
||||
double norm = cv::norm((cv::Mat)disp, img_template, cv::NORM_INF); |
||||
if (norm >= 0.5) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nStereoBP norm = %f\n", norm); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
}; |
||||
|
||||
TEST(StereoBP, regression) { CV_GpuStereoBPTest test; test.safe_run(); } |
@ -1,89 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
struct CV_GpuStereoCSBPTest : public cvtest::BaseTest |
||||
{ |
||||
void run(int ) |
||||
{ |
||||
cv::Mat img_l = cv::imread(std::string(ts->get_data_path()) + "csstereobp/aloe-L.png"); |
||||
cv::Mat img_r = cv::imread(std::string(ts->get_data_path()) + "csstereobp/aloe-R.png"); |
||||
|
||||
cv::Mat img_template; |
||||
|
||||
if (cv::gpu::TargetArchs::builtWith(cv::gpu::FEATURE_SET_COMPUTE_20) && |
||||
cv::gpu::DeviceInfo().supports(cv::gpu::FEATURE_SET_COMPUTE_20)) |
||||
img_template = cv::imread(std::string(ts->get_data_path()) + "csstereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
else |
||||
img_template = cv::imread(std::string(ts->get_data_path()) + "csstereobp/aloe-disp_CC1X.png", CV_LOAD_IMAGE_GRAYSCALE); |
||||
|
||||
if (img_l.empty() || img_r.empty() || img_template.empty()) |
||||
{ |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
||||
return; |
||||
} |
||||
|
||||
{cv::Mat temp; cv::cvtColor(img_l, temp, CV_BGR2BGRA); cv::swap(temp, img_l);} |
||||
{cv::Mat temp; cv::cvtColor(img_r, temp, CV_BGR2BGRA); cv::swap(temp, img_r);} |
||||
|
||||
cv::gpu::GpuMat disp; |
||||
cv::gpu::StereoConstantSpaceBP bpm(128, 16, 4, 4); |
||||
|
||||
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), disp); |
||||
|
||||
//cv::imwrite(std::string(ts->get_data_path()) + "csstereobp/aloe-disp_CC1X.png", cv::Mat(disp));
|
||||
|
||||
disp.convertTo(disp, img_template.type()); |
||||
|
||||
double norm = cv::norm((cv::Mat)disp, img_template, cv::NORM_INF); |
||||
if (norm >= 1.5) |
||||
{ |
||||
ts->printf(cvtest::TS::LOG, "\nConstantSpaceStereoBP norm = %f\n", norm); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); |
||||
return; |
||||
} |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
}; |
||||
|
||||
TEST(StereoConstantSpaceBP, regression) { CV_GpuStereoCSBPTest test; test.safe_run(); } |
Loading…
Reference in new issue