diff --git a/modules/ocl/perf/perf_ml.cpp b/modules/ocl/perf/perf_ml.cpp index db45eceb8f..13dcaa18f0 100644 --- a/modules/ocl/perf/perf_ml.cpp +++ b/modules/ocl/perf/perf_ml.cpp @@ -106,4 +106,108 @@ PERF_TEST_P(KNNFixture, KNN, }else OCL_PERF_ELSE SANITY_CHECK(best_label); -} \ No newline at end of file +} + + +typedef TestBaseWithParam > SVMFixture; + +// code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp +PERF_TEST_P(SVMFixture, DISABLED_SVM, + testing::Values(50, 100)) +{ + + const int NTRAINING_SAMPLES = get<0>(GetParam()); // Number of training samples per class + + #define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part + + const int WIDTH = 512, HEIGHT = 512; + + Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1); + Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1); + + RNG rng(100); // Random value generation class + + // Set up the linearly separable part of the training data + int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES); + + // Generate random points for the class 1 + Mat trainClass = trainData.rowRange(0, nLinearSamples); + // The x coordinate of the points is in [0, 0.4) + Mat c = trainClass.colRange(0, 1); + rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH)); + // The y coordinate of the points is in [0, 1) + c = trainClass.colRange(1,2); + rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); + + // Generate random points for the class 2 + trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES); + // The x coordinate of the points is in [0.6, 1] + c = trainClass.colRange(0 , 1); + rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH)); + // The y coordinate of the points is in [0, 1) + c = trainClass.colRange(1,2); + rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); + + //------------------ Set up the non-linearly separable part of the training data --------------- + + // Generate random points for the classes 1 and 2 + trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples); + // The x coordinate of the points is in [0.4, 0.6) + c = trainClass.colRange(0,1); + rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH)); + // The y coordinate of the points is in [0, 1) + c = trainClass.colRange(1,2); + rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); + + //------------------------- Set up the labels for the classes --------------------------------- + labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1 + labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2 + + //------------------------ Set up the support vector machines parameters -------------------- + CvSVMParams params; + params.svm_type = SVM::C_SVC; + params.C = 0.1; + params.kernel_type = SVM::LINEAR; + params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6); + + Mat dst = Mat::zeros(HEIGHT, WIDTH, CV_8UC1); + + Mat samples(WIDTH*HEIGHT, 2, CV_32FC1); + int k = 0; + for (int i = 0; i < HEIGHT; ++i) + { + for (int j = 0; j < WIDTH; ++j) + { + samples.at(k, 0) = (float)i; + samples.at(k, 0) = (float)j; + k++; + } + } + Mat results(WIDTH*HEIGHT, 1, CV_32FC1); + + CvMat samples_ = samples; + CvMat results_ = results; + + if(RUN_PLAIN_IMPL) + { + CvSVM svm; + svm.train(trainData, labels, Mat(), Mat(), params); + TEST_CYCLE() + { + svm.predict(&samples_, &results_); + } + } + else if(RUN_OCL_IMPL) + { + CvSVM_OCL svm; + svm.train(trainData, labels, Mat(), Mat(), params); + OCL_TEST_CYCLE() + { + svm.predict(&samples_, &results_); + } + } + else + OCL_PERF_ELSE + + SANITY_CHECK_NOTHING(); +}