refactored StereoBeliefPropagation

pull/1014/head
Vladislav Vinogradov 12 years ago
parent dd6d58f873
commit d0e89337da
  1. 74
      modules/gpustereo/include/opencv2/gpustereo.hpp
  2. 4
      modules/gpustereo/perf/perf_stereo.cpp
  3. 432
      modules/gpustereo/src/stereobp.cpp
  4. 9
      modules/gpustereo/test/test_stereo.cpp
  5. 30
      samples/gpu/stereo_match.cpp

@ -65,61 +65,55 @@ public:
CV_EXPORTS Ptr<gpu::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19); CV_EXPORTS Ptr<gpu::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19);
/////////////////////////////////////////
// StereoBeliefPropagation
//! "Efficient Belief Propagation for Early Vision" P.Felzenszwalb
// "Efficient Belief Propagation for Early Vision" class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher
// P.Felzenszwalb
class CV_EXPORTS StereoBeliefPropagation
{ {
public: public:
enum { DEFAULT_NDISP = 64 }; using cv::StereoMatcher::compute;
enum { DEFAULT_ITERS = 5 };
enum { DEFAULT_LEVELS = 5 };
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels); virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
//! the default constructor //! version for user specified data term
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0;
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int msg_type = CV_32F);
//! the full constructor taking the number of disparities, number of BP iterations on each level, //! number of BP iterations on each level
//! number of levels, truncation of data cost, data weight, virtual int getNumIters() const = 0;
//! truncation of discontinuity cost and discontinuity single jump virtual void setNumIters(int iters) = 0;
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
//! please see paper for more details
StereoBeliefPropagation(int ndisp, int iters, int levels,
float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump,
int msg_type = CV_32F);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair, //! number of levels
//! if disparity is empty output type will be CV_16S else output type will be disparity.type(). virtual int getNumLevels() const = 0;
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()); virtual void setNumLevels(int levels) = 0;
//! truncation of data cost
virtual double getMaxDataTerm() const = 0;
virtual void setMaxDataTerm(double max_data_term) = 0;
//! version for user specified data term //! data weight
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null()); virtual double getDataWeight() const = 0;
virtual void setDataWeight(double data_weight) = 0;
int ndisp; //! truncation of discontinuity cost
virtual double getMaxDiscTerm() const = 0;
virtual void setMaxDiscTerm(double max_disc_term) = 0;
int iters; //! discontinuity single jump
int levels; virtual double getDiscSingleJump() const = 0;
virtual void setDiscSingleJump(double disc_single_jump) = 0;
float max_data_term; virtual int getMsgType() const = 0;
float data_weight; virtual void setMsgType(int msg_type) = 0;
float max_disc_term;
float disc_single_jump;
int msg_type; static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
private:
GpuMat u, d, l, r, u2, d2, l2, r2;
std::vector<GpuMat> datas;
GpuMat out;
}; };
CV_EXPORTS Ptr<gpu::StereoBeliefPropagation>
createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F);
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching" // "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
// Qingxiong Yang, Liang Wang, Narendra Ahuja // Qingxiong Yang, Liang Wang, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/ // http://vision.ai.uiuc.edu/~qyang6/

@ -107,13 +107,13 @@ PERF_TEST_P(ImagePair, StereoBeliefPropagation,
if (PERF_RUN_GPU()) if (PERF_RUN_GPU())
{ {
cv::gpu::StereoBeliefPropagation d_bp(ndisp); cv::Ptr<cv::gpu::StereoBeliefPropagation> d_bp = cv::gpu::createStereoBeliefPropagation(ndisp);
const cv::gpu::GpuMat d_imgLeft(imgLeft); const cv::gpu::GpuMat d_imgLeft(imgLeft);
const cv::gpu::GpuMat d_imgRight(imgRight); const cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat dst; cv::gpu::GpuMat dst;
TEST_CYCLE() d_bp(d_imgLeft, d_imgRight, dst); TEST_CYCLE() d_bp->compute(d_imgLeft, d_imgRight, dst);
GPU_SANITY_CHECK(dst); GPU_SANITY_CHECK(dst);
} }

@ -49,12 +49,7 @@ using namespace cv::gpu;
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); } void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); }
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); } Ptr<gpu::StereoBeliefPropagation> cv::gpu::createStereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); return Ptr<gpu::StereoBeliefPropagation>(); }
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_no_cuda(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
#else /* !defined (HAVE_CUDA) */ #else /* !defined (HAVE_CUDA) */
@ -78,263 +73,308 @@ namespace cv { namespace gpu { namespace cudev
} }
}}} }}}
using namespace ::cv::gpu::cudev::stereobp;
namespace namespace
{ {
class StereoBPImpl : public gpu::StereoBeliefPropagation
{
public:
StereoBPImpl(int ndisp, int iters, int levels, int msg_type);
void compute(InputArray left, InputArray right, OutputArray disparity);
void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
void compute(InputArray data, OutputArray disparity, Stream& stream);
int getMinDisparity() const { return 0; }
void setMinDisparity(int /*minDisparity*/) {}
int getNumDisparities() const { return ndisp_; }
void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }
int getBlockSize() const { return 0; }
void setBlockSize(int /*blockSize*/) {}
int getSpeckleWindowSize() const { return 0; }
void setSpeckleWindowSize(int /*speckleWindowSize*/) {}
int getSpeckleRange() const { return 0; }
void setSpeckleRange(int /*speckleRange*/) {}
int getDisp12MaxDiff() const { return 0; }
void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}
int getNumIters() const { return iters_; }
void setNumIters(int iters) { iters_ = iters; }
int getNumLevels() const { return levels_; }
void setNumLevels(int levels) { levels_ = levels; }
double getMaxDataTerm() const { return max_data_term_; }
void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }
double getDataWeight() const { return data_weight_; }
void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }
double getMaxDiscTerm() const { return max_disc_term_; }
void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }
double getDiscSingleJump() const { return disc_single_jump_; }
void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }
int getMsgType() const { return msg_type_; }
void setMsgType(int msg_type) { msg_type_ = msg_type; }
private:
void init(Stream& stream);
void calcBP(OutputArray disp, Stream& stream);
int ndisp_;
int iters_;
int levels_;
float max_data_term_;
float data_weight_;
float max_disc_term_;
float disc_single_jump_;
int msg_type_;
float scale_;
int rows_, cols_;
std::vector<int> cols_all_, rows_all_;
GpuMat u_, d_, l_, r_, u2_, d2_, l2_, r2_;
std::vector<GpuMat> datas_;
GpuMat outBuf_;
};
const float DEFAULT_MAX_DATA_TERM = 10.0f; const float DEFAULT_MAX_DATA_TERM = 10.0f;
const float DEFAULT_DATA_WEIGHT = 0.07f; const float DEFAULT_DATA_WEIGHT = 0.07f;
const float DEFAULT_MAX_DISC_TERM = 1.7f; const float DEFAULT_MAX_DISC_TERM = 1.7f;
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
}
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels) StereoBPImpl::StereoBPImpl(int ndisp, int iters, int levels, int msg_type) :
{ ndisp_(ndisp), iters_(iters), levels_(levels),
ndisp = width / 4; max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
if ((ndisp & 1) != 0) max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
ndisp++; msg_type_(msg_type)
{
}
int mm = std::max(width, height); void StereoBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
iters = mm / 100 + 2; {
compute(left, right, disparity, Stream::Null());
}
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5; void StereoBPImpl::compute(InputArray _left, InputArray _right, OutputArray disparity, Stream& stream)
if (levels == 0) levels++; {
} using namespace cv::gpu::cudev::stereobp;
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
: ndisp(ndisp_), iters(iters_), levels(levels_), static const comp_data_t comp_data_callers[2][5] =
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), {
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), {0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
msg_type(msg_type_), datas(levels_) {0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
{ };
}
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
: ndisp(ndisp_), iters(iters_), levels(levels_),
max_data_term(max_data_term_), data_weight(data_weight_),
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
msg_type(msg_type_), datas(levels_)
{
}
namespace CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
{ CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
class StereoBeliefPropagationImpl CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
{
public:
StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_,
GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_,
GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_,
std::vector<GpuMat>& datas_, GpuMat& out_)
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_),
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f)
{
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels);
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S);
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < std::numeric_limits<short>::max());
}
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) GpuMat left = _left.getGpuMat();
{ GpuMat right = _right.getGpuMat();
typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
static const comp_data_t comp_data_callers[2][5] =
{
{0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
{0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
};
CV_Assert(left.size() == right.size() && left.type() == right.type()); CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4); CV_Assert( left.size() == right.size() && left.type() == right.type() );
rows = left.rows; rows_ = left.rows;
cols = left.cols; cols_ = left.cols;
int divisor = (int)pow(2.f, rthis.levels - 1.0f); const int divisor = (int) pow(2.f, levels_ - 1.0f);
int lowest_cols = cols / divisor; const int lowest_cols = cols_ / divisor;
int lowest_rows = rows / divisor; const int lowest_rows = rows_ / divisor;
const int min_image_dim_size = 2; const int min_image_dim_size = 2;
CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size); CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
init(stream); init(stream);
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type); datas_[0].create(rows_ * ndisp_, cols_, msg_type_);
comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream)); comp_data_callers[msg_type_ == CV_32F][left.channels()](left, right, datas_[0], StreamAccessor::getStream(stream));
calcBP(disp, stream); calcBP(disparity, stream);
} }
void operator()(const GpuMat& data, GpuMat& disp, Stream& stream) void StereoBPImpl::compute(InputArray _data, OutputArray disparity, Stream& stream)
{ {
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0)); scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
rows = data.rows / rthis.ndisp; CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
cols = data.cols; CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
int divisor = (int)pow(2.f, rthis.levels - 1.0f); GpuMat data = _data.getGpuMat();
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size);
init(stream); CV_Assert( (data.type() == msg_type_) && (data.rows % ndisp_ == 0) );
datas[0] = data; rows_ = data.rows / ndisp_;
cols_ = data.cols;
calcBP(disp, stream); const int divisor = (int) pow(2.f, levels_ - 1.0f);
} const int lowest_cols = cols_ / divisor;
private: const int lowest_rows = rows_ / divisor;
void init(Stream& stream) const int min_image_dim_size = 2;
{ CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
u.create(rows * rthis.ndisp, cols, rthis.msg_type);
d.create(rows * rthis.ndisp, cols, rthis.msg_type);
l.create(rows * rthis.ndisp, cols, rthis.msg_type);
r.create(rows * rthis.ndisp, cols, rthis.msg_type);
if (rthis.levels & 1) init(stream);
{
//can clear less area
u.setTo(zero, stream);
d.setTo(zero, stream);
l.setTo(zero, stream);
r.setTo(zero, stream);
}
if (rthis.levels > 1) data.copyTo(datas_[0], stream);
{
int less_rows = (rows + 1) / 2;
int less_cols = (cols + 1) / 2;
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
if ((rthis.levels & 1) == 0)
{
u2.setTo(zero, stream);
d2.setTo(zero, stream);
l2.setTo(zero, stream);
r2.setTo(zero, stream);
}
}
load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump); calcBP(disparity, stream);
}
datas.resize(rthis.levels); void StereoBPImpl::init(Stream& stream)
{
using namespace cv::gpu::cudev::stereobp;
cols_all.resize(rthis.levels); u_.create(rows_ * ndisp_, cols_, msg_type_);
rows_all.resize(rthis.levels); d_.create(rows_ * ndisp_, cols_, msg_type_);
l_.create(rows_ * ndisp_, cols_, msg_type_);
r_.create(rows_ * ndisp_, cols_, msg_type_);
cols_all[0] = cols; if (levels_ & 1)
rows_all[0] = rows; {
//can clear less area
u_.setTo(0, stream);
d_.setTo(0, stream);
l_.setTo(0, stream);
r_.setTo(0, stream);
} }
void calcBP(GpuMat& disp, Stream& stream) if (levels_ > 1)
{ {
typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); int less_rows = (rows_ + 1) / 2;
static const data_step_down_t data_step_down_callers[2] = int less_cols = (cols_ + 1) / 2;
{
data_step_down_gpu<short>, data_step_down_gpu<float>
};
typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); u2_.create(less_rows * ndisp_, less_cols, msg_type_);
static const level_up_messages_t level_up_messages_callers[2] = d2_.create(less_rows * ndisp_, less_cols, msg_type_);
{ l2_.create(less_rows * ndisp_, less_cols, msg_type_);
level_up_messages_gpu<short>, level_up_messages_gpu<float> r2_.create(less_rows * ndisp_, less_cols, msg_type_);
};
typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); if ((levels_ & 1) == 0)
static const calc_all_iterations_t calc_all_iterations_callers[2] =
{ {
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float> u2_.setTo(0, stream);
}; d2_.setTo(0, stream);
l2_.setTo(0, stream);
r2_.setTo(0, stream);
}
}
typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream); load_constants(ndisp_, max_data_term_, scale_ * data_weight_, scale_ * max_disc_term_, scale_ * disc_single_jump_);
static const output_t output_callers[2] =
{
output_gpu<short>, output_gpu<float>
};
const int funcIdx = rthis.msg_type == CV_32F; datas_.resize(levels_);
cudaStream_t cudaStream = StreamAccessor::getStream(stream); cols_all_.resize(levels_);
rows_all_.resize(levels_);
for (int i = 1; i < rthis.levels; ++i) cols_all_[0] = cols_;
{ rows_all_[0] = rows_;
cols_all[i] = (cols_all[i-1] + 1) / 2; }
rows_all[i] = (rows_all[i-1] + 1) / 2;
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type); void StereoBPImpl::calcBP(OutputArray disp, Stream& _stream)
{
using namespace cv::gpu::cudev::stereobp;
data_step_down_callers[funcIdx](cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], cudaStream); typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
} static const data_step_down_t data_step_down_callers[2] =
{
data_step_down_gpu<short>, data_step_down_gpu<float>
};
PtrStepSzb mus[] = {u, u2}; typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
PtrStepSzb mds[] = {d, d2}; static const level_up_messages_t level_up_messages_callers[2] =
PtrStepSzb mrs[] = {r, r2}; {
PtrStepSzb mls[] = {l, l2}; level_up_messages_gpu<short>, level_up_messages_gpu<float>
};
int mem_idx = (rthis.levels & 1) ? 0 : 1; typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
static const calc_all_iterations_t calc_all_iterations_callers[2] =
{
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
};
for (int i = rthis.levels - 1; i >= 0; --i) typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
{ static const output_t output_callers[2] =
// for lower level we have already computed messages by setting to zero {
if (i != rthis.levels - 1) output_gpu<short>, output_gpu<float>
level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream); };
calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream); const int funcIdx = msg_type_ == CV_32F;
mem_idx = (mem_idx + 1) & 1; cudaStream_t stream = StreamAccessor::getStream(_stream);
}
if (disp.empty()) for (int i = 1; i < levels_; ++i)
disp.create(rows, cols, CV_16S); {
cols_all_[i] = (cols_all_[i-1] + 1) / 2;
rows_all_[i] = (rows_all_[i-1] + 1) / 2;
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); datas_[i].create(rows_all_[i] * ndisp_, cols_all_[i], msg_type_);
out.setTo(zero, stream); data_step_down_callers[funcIdx](cols_all_[i], rows_all_[i], rows_all_[i-1], datas_[i-1], datas_[i], stream);
}
output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream); PtrStepSzb mus[] = {u_, u2_};
PtrStepSzb mds[] = {d_, d2_};
PtrStepSzb mrs[] = {r_, r2_};
PtrStepSzb mls[] = {l_, l2_};
if (disp.type() != CV_16S) int mem_idx = (levels_ & 1) ? 0 : 1;
out.convertTo(disp, disp.type(), stream);
}
StereoBeliefPropagation& rthis; for (int i = levels_ - 1; i >= 0; --i)
{
// for lower level we have already computed messages by setting to zero
if (i != levels_ - 1)
level_up_messages_callers[funcIdx](mem_idx, cols_all_[i], rows_all_[i], rows_all_[i+1], mus, mds, mls, mrs, stream);
calc_all_iterations_callers[funcIdx](cols_all_[i], rows_all_[i], iters_, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas_[i], stream);
GpuMat& u; mem_idx = (mem_idx + 1) & 1;
GpuMat& d; }
GpuMat& l;
GpuMat& r;
GpuMat& u2; const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;
GpuMat& d2;
GpuMat& l2;
GpuMat& r2;
std::vector<GpuMat>& datas; disp.create(rows_, cols_, dtype);
GpuMat& out; GpuMat out = disp.getGpuMat();
const Scalar zero; if (dtype != CV_16SC1)
const float scale; {
outBuf_.create(rows_, cols_, CV_16SC1);
out = outBuf_;
}
int rows, cols; out.setTo(0, _stream);
std::vector<int> cols_all, rows_all; output_callers[funcIdx](u_, d_, l_, r_, datas_.front(), out, stream);
};
if (dtype != CV_16SC1)
out.convertTo(disp, dtype, _stream);
}
} }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) Ptr<gpu::StereoBeliefPropagation> cv::gpu::createStereoBeliefPropagation(int ndisp, int iters, int levels, int msg_type)
{ {
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); return new StereoBPImpl(ndisp, iters, levels, msg_type);
impl(left, right, disp, stream);
} }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream) void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
{ {
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); ndisp = width / 4;
impl(data, disp, stream); if ((ndisp & 1) != 0)
ndisp++;
int mm = std::max(width, height);
iters = mm / 100 + 2;
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
if (levels == 0) levels++;
} }
#endif /* !defined (HAVE_CUDA) */ #endif /* !defined (HAVE_CUDA) */

@ -106,10 +106,15 @@ GPU_TEST_P(StereoBeliefPropagation, Regression)
ASSERT_FALSE(right_image.empty()); ASSERT_FALSE(right_image.empty());
ASSERT_FALSE(disp_gold.empty()); ASSERT_FALSE(disp_gold.empty());
cv::gpu::StereoBeliefPropagation bp(64, 8, 2, 25, 0.1f, 15, 1, CV_16S); cv::Ptr<cv::gpu::StereoBeliefPropagation> bp = cv::gpu::createStereoBeliefPropagation(64, 8, 2, CV_16S);
bp->setMaxDataTerm(25.0);
bp->setDataWeight(0.1);
bp->setMaxDiscTerm(15.0);
bp->setDiscSingleJump(1.0);
cv::gpu::GpuMat disp; cv::gpu::GpuMat disp;
bp(loadMat(left_image), loadMat(right_image), disp); bp->compute(loadMat(left_image), loadMat(right_image), disp);
cv::Mat h_disp(disp); cv::Mat h_disp(disp);
h_disp.convertTo(h_disp, disp_gold.depth()); h_disp.convertTo(h_disp, disp_gold.depth());

@ -66,7 +66,7 @@ private:
gpu::GpuMat d_left, d_right; gpu::GpuMat d_left, d_right;
Ptr<gpu::StereoBM> bm; Ptr<gpu::StereoBM> bm;
gpu::StereoBeliefPropagation bp; Ptr<gpu::StereoBeliefPropagation> bp;
gpu::StereoConstantSpaceBP csbp; gpu::StereoConstantSpaceBP csbp;
int64 work_begin; int64 work_begin;
@ -173,7 +173,7 @@ void App::run()
// Set common parameters // Set common parameters
bm = gpu::createStereoBM(p.ndisp); bm = gpu::createStereoBM(p.ndisp);
bp.ndisp = p.ndisp; bp = gpu::createStereoBeliefPropagation(p.ndisp);
csbp.ndisp = p.ndisp; csbp.ndisp = p.ndisp;
// Prepare disparity map of specified type // Prepare disparity map of specified type
@ -203,7 +203,7 @@ void App::run()
} }
bm->compute(d_left, d_right, d_disp); bm->compute(d_left, d_right, d_disp);
break; break;
case Params::BP: bp(d_left, d_right, d_disp); break; case Params::BP: bp->compute(d_left, d_right, d_disp); break;
case Params::CSBP: csbp(d_left, d_right, d_disp); break; case Params::CSBP: csbp(d_left, d_right, d_disp); break;
} }
workEnd(); workEnd();
@ -232,8 +232,8 @@ void App::printParams() const
cout << "prefilter_sobel: " << bm->getPreFilterType() << endl; cout << "prefilter_sobel: " << bm->getPreFilterType() << endl;
break; break;
case Params::BP: case Params::BP:
cout << "iter_count: " << bp.iters << endl; cout << "iter_count: " << bp->getNumIters() << endl;
cout << "level_count: " << bp.levels << endl; cout << "level_count: " << bp->getNumLevels() << endl;
break; break;
case Params::CSBP: case Params::CSBP:
cout << "iter_count: " << csbp.iters << endl; cout << "iter_count: " << csbp.iters << endl;
@ -305,14 +305,14 @@ void App::handleKey(char key)
p.ndisp = p.ndisp == 1 ? 8 : p.ndisp + 8; p.ndisp = p.ndisp == 1 ? 8 : p.ndisp + 8;
cout << "ndisp: " << p.ndisp << endl; cout << "ndisp: " << p.ndisp << endl;
bm->setNumDisparities(p.ndisp); bm->setNumDisparities(p.ndisp);
bp.ndisp = p.ndisp; bp->setNumDisparities(p.ndisp);
csbp.ndisp = p.ndisp; csbp.ndisp = p.ndisp;
break; break;
case 'q': case 'Q': case 'q': case 'Q':
p.ndisp = max(p.ndisp - 8, 1); p.ndisp = max(p.ndisp - 8, 1);
cout << "ndisp: " << p.ndisp << endl; cout << "ndisp: " << p.ndisp << endl;
bm->setNumDisparities(p.ndisp); bm->setNumDisparities(p.ndisp);
bp.ndisp = p.ndisp; bp->setNumDisparities(p.ndisp);
csbp.ndisp = p.ndisp; csbp.ndisp = p.ndisp;
break; break;
case '2': case '2':
@ -332,8 +332,8 @@ void App::handleKey(char key)
case '3': case '3':
if (p.method == Params::BP) if (p.method == Params::BP)
{ {
bp.iters += 1; bp->setNumIters(bp->getNumIters() + 1);
cout << "iter_count: " << bp.iters << endl; cout << "iter_count: " << bp->getNumIters() << endl;
} }
else if (p.method == Params::CSBP) else if (p.method == Params::CSBP)
{ {
@ -344,8 +344,8 @@ void App::handleKey(char key)
case 'e': case 'E': case 'e': case 'E':
if (p.method == Params::BP) if (p.method == Params::BP)
{ {
bp.iters = max(bp.iters - 1, 1); bp->setNumIters(max(bp->getNumIters() - 1, 1));
cout << "iter_count: " << bp.iters << endl; cout << "iter_count: " << bp->getNumIters() << endl;
} }
else if (p.method == Params::CSBP) else if (p.method == Params::CSBP)
{ {
@ -356,8 +356,8 @@ void App::handleKey(char key)
case '4': case '4':
if (p.method == Params::BP) if (p.method == Params::BP)
{ {
bp.levels += 1; bp->setNumLevels(bp->getNumLevels() + 1);
cout << "level_count: " << bp.levels << endl; cout << "level_count: " << bp->getNumLevels() << endl;
} }
else if (p.method == Params::CSBP) else if (p.method == Params::CSBP)
{ {
@ -368,8 +368,8 @@ void App::handleKey(char key)
case 'r': case 'R': case 'r': case 'R':
if (p.method == Params::BP) if (p.method == Params::BP)
{ {
bp.levels = max(bp.levels - 1, 1); bp->setNumLevels(max(bp->getNumLevels() - 1, 1));
cout << "level_count: " << bp.levels << endl; cout << "level_count: " << bp->getNumLevels() << endl;
} }
else if (p.method == Params::CSBP) else if (p.method == Params::CSBP)
{ {

Loading…
Cancel
Save