|
|
|
@ -49,12 +49,7 @@ using namespace cv::gpu; |
|
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); } |
|
|
|
|
|
|
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); } |
|
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_no_cuda(); } |
|
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
|
|
|
Ptr<gpu::StereoBeliefPropagation> cv::gpu::createStereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); return Ptr<gpu::StereoBeliefPropagation>(); } |
|
|
|
|
|
|
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
|
|
|
|
|
@ -78,263 +73,308 @@ namespace cv { namespace gpu { namespace cudev |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
using namespace ::cv::gpu::cudev::stereobp; |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
class StereoBPImpl : public gpu::StereoBeliefPropagation |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
StereoBPImpl(int ndisp, int iters, int levels, int msg_type); |
|
|
|
|
|
|
|
|
|
void compute(InputArray left, InputArray right, OutputArray disparity); |
|
|
|
|
void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream); |
|
|
|
|
void compute(InputArray data, OutputArray disparity, Stream& stream); |
|
|
|
|
|
|
|
|
|
int getMinDisparity() const { return 0; } |
|
|
|
|
void setMinDisparity(int /*minDisparity*/) {} |
|
|
|
|
|
|
|
|
|
int getNumDisparities() const { return ndisp_; } |
|
|
|
|
void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; } |
|
|
|
|
|
|
|
|
|
int getBlockSize() const { return 0; } |
|
|
|
|
void setBlockSize(int /*blockSize*/) {} |
|
|
|
|
|
|
|
|
|
int getSpeckleWindowSize() const { return 0; } |
|
|
|
|
void setSpeckleWindowSize(int /*speckleWindowSize*/) {} |
|
|
|
|
|
|
|
|
|
int getSpeckleRange() const { return 0; } |
|
|
|
|
void setSpeckleRange(int /*speckleRange*/) {} |
|
|
|
|
|
|
|
|
|
int getDisp12MaxDiff() const { return 0; } |
|
|
|
|
void setDisp12MaxDiff(int /*disp12MaxDiff*/) {} |
|
|
|
|
|
|
|
|
|
int getNumIters() const { return iters_; } |
|
|
|
|
void setNumIters(int iters) { iters_ = iters; } |
|
|
|
|
|
|
|
|
|
int getNumLevels() const { return levels_; } |
|
|
|
|
void setNumLevels(int levels) { levels_ = levels; } |
|
|
|
|
|
|
|
|
|
double getMaxDataTerm() const { return max_data_term_; } |
|
|
|
|
void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; } |
|
|
|
|
|
|
|
|
|
double getDataWeight() const { return data_weight_; } |
|
|
|
|
void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; } |
|
|
|
|
|
|
|
|
|
double getMaxDiscTerm() const { return max_disc_term_; } |
|
|
|
|
void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; } |
|
|
|
|
|
|
|
|
|
double getDiscSingleJump() const { return disc_single_jump_; } |
|
|
|
|
void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; } |
|
|
|
|
|
|
|
|
|
int getMsgType() const { return msg_type_; } |
|
|
|
|
void setMsgType(int msg_type) { msg_type_ = msg_type; } |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
void init(Stream& stream); |
|
|
|
|
void calcBP(OutputArray disp, Stream& stream); |
|
|
|
|
|
|
|
|
|
int ndisp_; |
|
|
|
|
int iters_; |
|
|
|
|
int levels_; |
|
|
|
|
float max_data_term_; |
|
|
|
|
float data_weight_; |
|
|
|
|
float max_disc_term_; |
|
|
|
|
float disc_single_jump_; |
|
|
|
|
int msg_type_; |
|
|
|
|
|
|
|
|
|
float scale_; |
|
|
|
|
int rows_, cols_; |
|
|
|
|
std::vector<int> cols_all_, rows_all_; |
|
|
|
|
GpuMat u_, d_, l_, r_, u2_, d2_, l2_, r2_; |
|
|
|
|
std::vector<GpuMat> datas_; |
|
|
|
|
GpuMat outBuf_; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
const float DEFAULT_MAX_DATA_TERM = 10.0f; |
|
|
|
|
const float DEFAULT_DATA_WEIGHT = 0.07f; |
|
|
|
|
const float DEFAULT_MAX_DISC_TERM = 1.7f; |
|
|
|
|
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels) |
|
|
|
|
{ |
|
|
|
|
ndisp = width / 4; |
|
|
|
|
if ((ndisp & 1) != 0) |
|
|
|
|
ndisp++; |
|
|
|
|
StereoBPImpl::StereoBPImpl(int ndisp, int iters, int levels, int msg_type) : |
|
|
|
|
ndisp_(ndisp), iters_(iters), levels_(levels), |
|
|
|
|
max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT), |
|
|
|
|
max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP), |
|
|
|
|
msg_type_(msg_type) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int mm = std::max(width, height); |
|
|
|
|
iters = mm / 100 + 2; |
|
|
|
|
void StereoBPImpl::compute(InputArray left, InputArray right, OutputArray disparity) |
|
|
|
|
{ |
|
|
|
|
compute(left, right, disparity, Stream::Null()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5; |
|
|
|
|
if (levels == 0) levels++; |
|
|
|
|
} |
|
|
|
|
void StereoBPImpl::compute(InputArray _left, InputArray _right, OutputArray disparity, Stream& stream) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::stereobp; |
|
|
|
|
|
|
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) |
|
|
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_), |
|
|
|
|
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), |
|
|
|
|
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), |
|
|
|
|
msg_type(msg_type_), datas(levels_) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream); |
|
|
|
|
static const comp_data_t comp_data_callers[2][5] = |
|
|
|
|
{ |
|
|
|
|
{0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>}, |
|
|
|
|
{0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) |
|
|
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_), |
|
|
|
|
max_data_term(max_data_term_), data_weight(data_weight_), |
|
|
|
|
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), |
|
|
|
|
msg_type(msg_type_), datas(levels_) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f; |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
class StereoBeliefPropagationImpl |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_, |
|
|
|
|
GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_, |
|
|
|
|
GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_, |
|
|
|
|
std::vector<GpuMat>& datas_, GpuMat& out_) |
|
|
|
|
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_), |
|
|
|
|
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels); |
|
|
|
|
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S); |
|
|
|
|
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < std::numeric_limits<short>::max()); |
|
|
|
|
} |
|
|
|
|
CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ ); |
|
|
|
|
CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S ); |
|
|
|
|
CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() ); |
|
|
|
|
|
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) |
|
|
|
|
{ |
|
|
|
|
typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream); |
|
|
|
|
static const comp_data_t comp_data_callers[2][5] = |
|
|
|
|
{ |
|
|
|
|
{0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>}, |
|
|
|
|
{0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>} |
|
|
|
|
}; |
|
|
|
|
GpuMat left = _left.getGpuMat(); |
|
|
|
|
GpuMat right = _right.getGpuMat(); |
|
|
|
|
|
|
|
|
|
CV_Assert(left.size() == right.size() && left.type() == right.type()); |
|
|
|
|
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4); |
|
|
|
|
CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 ); |
|
|
|
|
CV_Assert( left.size() == right.size() && left.type() == right.type() ); |
|
|
|
|
|
|
|
|
|
rows = left.rows; |
|
|
|
|
cols = left.cols; |
|
|
|
|
rows_ = left.rows; |
|
|
|
|
cols_ = left.cols; |
|
|
|
|
|
|
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
|
|
|
|
int lowest_cols = cols / divisor; |
|
|
|
|
int lowest_rows = rows / divisor; |
|
|
|
|
const int min_image_dim_size = 2; |
|
|
|
|
CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size); |
|
|
|
|
const int divisor = (int) pow(2.f, levels_ - 1.0f); |
|
|
|
|
const int lowest_cols = cols_ / divisor; |
|
|
|
|
const int lowest_rows = rows_ / divisor; |
|
|
|
|
const int min_image_dim_size = 2; |
|
|
|
|
CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size ); |
|
|
|
|
|
|
|
|
|
init(stream); |
|
|
|
|
init(stream); |
|
|
|
|
|
|
|
|
|
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
|
datas_[0].create(rows_ * ndisp_, cols_, msg_type_); |
|
|
|
|
|
|
|
|
|
comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream)); |
|
|
|
|
comp_data_callers[msg_type_ == CV_32F][left.channels()](left, right, datas_[0], StreamAccessor::getStream(stream)); |
|
|
|
|
|
|
|
|
|
calcBP(disp, stream); |
|
|
|
|
} |
|
|
|
|
calcBP(disparity, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void operator()(const GpuMat& data, GpuMat& disp, Stream& stream) |
|
|
|
|
{ |
|
|
|
|
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0)); |
|
|
|
|
void StereoBPImpl::compute(InputArray _data, OutputArray disparity, Stream& stream) |
|
|
|
|
{ |
|
|
|
|
scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f; |
|
|
|
|
|
|
|
|
|
rows = data.rows / rthis.ndisp; |
|
|
|
|
cols = data.cols; |
|
|
|
|
CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ ); |
|
|
|
|
CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S ); |
|
|
|
|
CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() ); |
|
|
|
|
|
|
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
|
|
|
|
int lowest_cols = cols / divisor; |
|
|
|
|
int lowest_rows = rows / divisor; |
|
|
|
|
const int min_image_dim_size = 2; |
|
|
|
|
CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size); |
|
|
|
|
GpuMat data = _data.getGpuMat(); |
|
|
|
|
|
|
|
|
|
init(stream); |
|
|
|
|
CV_Assert( (data.type() == msg_type_) && (data.rows % ndisp_ == 0) ); |
|
|
|
|
|
|
|
|
|
datas[0] = data; |
|
|
|
|
rows_ = data.rows / ndisp_; |
|
|
|
|
cols_ = data.cols; |
|
|
|
|
|
|
|
|
|
calcBP(disp, stream); |
|
|
|
|
} |
|
|
|
|
private: |
|
|
|
|
void init(Stream& stream) |
|
|
|
|
{ |
|
|
|
|
u.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
|
d.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
|
l.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
|
r.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
|
const int divisor = (int) pow(2.f, levels_ - 1.0f); |
|
|
|
|
const int lowest_cols = cols_ / divisor; |
|
|
|
|
const int lowest_rows = rows_ / divisor; |
|
|
|
|
const int min_image_dim_size = 2; |
|
|
|
|
CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size ); |
|
|
|
|
|
|
|
|
|
if (rthis.levels & 1) |
|
|
|
|
{ |
|
|
|
|
//can clear less area
|
|
|
|
|
u.setTo(zero, stream); |
|
|
|
|
d.setTo(zero, stream); |
|
|
|
|
l.setTo(zero, stream); |
|
|
|
|
r.setTo(zero, stream); |
|
|
|
|
} |
|
|
|
|
init(stream); |
|
|
|
|
|
|
|
|
|
if (rthis.levels > 1) |
|
|
|
|
{ |
|
|
|
|
int less_rows = (rows + 1) / 2; |
|
|
|
|
int less_cols = (cols + 1) / 2; |
|
|
|
|
|
|
|
|
|
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
|
|
|
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
|
|
|
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
|
|
|
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
|
|
|
|
|
|
|
|
if ((rthis.levels & 1) == 0) |
|
|
|
|
{ |
|
|
|
|
u2.setTo(zero, stream); |
|
|
|
|
d2.setTo(zero, stream); |
|
|
|
|
l2.setTo(zero, stream); |
|
|
|
|
r2.setTo(zero, stream); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
data.copyTo(datas_[0], stream); |
|
|
|
|
|
|
|
|
|
load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump); |
|
|
|
|
calcBP(disparity, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
datas.resize(rthis.levels); |
|
|
|
|
void StereoBPImpl::init(Stream& stream) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::stereobp; |
|
|
|
|
|
|
|
|
|
cols_all.resize(rthis.levels); |
|
|
|
|
rows_all.resize(rthis.levels); |
|
|
|
|
u_.create(rows_ * ndisp_, cols_, msg_type_); |
|
|
|
|
d_.create(rows_ * ndisp_, cols_, msg_type_); |
|
|
|
|
l_.create(rows_ * ndisp_, cols_, msg_type_); |
|
|
|
|
r_.create(rows_ * ndisp_, cols_, msg_type_); |
|
|
|
|
|
|
|
|
|
cols_all[0] = cols; |
|
|
|
|
rows_all[0] = rows; |
|
|
|
|
if (levels_ & 1) |
|
|
|
|
{ |
|
|
|
|
//can clear less area
|
|
|
|
|
u_.setTo(0, stream); |
|
|
|
|
d_.setTo(0, stream); |
|
|
|
|
l_.setTo(0, stream); |
|
|
|
|
r_.setTo(0, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void calcBP(GpuMat& disp, Stream& stream) |
|
|
|
|
if (levels_ > 1) |
|
|
|
|
{ |
|
|
|
|
typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); |
|
|
|
|
static const data_step_down_t data_step_down_callers[2] = |
|
|
|
|
{ |
|
|
|
|
data_step_down_gpu<short>, data_step_down_gpu<float> |
|
|
|
|
}; |
|
|
|
|
int less_rows = (rows_ + 1) / 2; |
|
|
|
|
int less_cols = (cols_ + 1) / 2; |
|
|
|
|
|
|
|
|
|
typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); |
|
|
|
|
static const level_up_messages_t level_up_messages_callers[2] = |
|
|
|
|
{ |
|
|
|
|
level_up_messages_gpu<short>, level_up_messages_gpu<float> |
|
|
|
|
}; |
|
|
|
|
u2_.create(less_rows * ndisp_, less_cols, msg_type_); |
|
|
|
|
d2_.create(less_rows * ndisp_, less_cols, msg_type_); |
|
|
|
|
l2_.create(less_rows * ndisp_, less_cols, msg_type_); |
|
|
|
|
r2_.create(less_rows * ndisp_, less_cols, msg_type_); |
|
|
|
|
|
|
|
|
|
typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); |
|
|
|
|
static const calc_all_iterations_t calc_all_iterations_callers[2] = |
|
|
|
|
if ((levels_ & 1) == 0) |
|
|
|
|
{ |
|
|
|
|
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float> |
|
|
|
|
}; |
|
|
|
|
u2_.setTo(0, stream); |
|
|
|
|
d2_.setTo(0, stream); |
|
|
|
|
l2_.setTo(0, stream); |
|
|
|
|
r2_.setTo(0, stream); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream); |
|
|
|
|
static const output_t output_callers[2] = |
|
|
|
|
{ |
|
|
|
|
output_gpu<short>, output_gpu<float> |
|
|
|
|
}; |
|
|
|
|
load_constants(ndisp_, max_data_term_, scale_ * data_weight_, scale_ * max_disc_term_, scale_ * disc_single_jump_); |
|
|
|
|
|
|
|
|
|
const int funcIdx = rthis.msg_type == CV_32F; |
|
|
|
|
datas_.resize(levels_); |
|
|
|
|
|
|
|
|
|
cudaStream_t cudaStream = StreamAccessor::getStream(stream); |
|
|
|
|
cols_all_.resize(levels_); |
|
|
|
|
rows_all_.resize(levels_); |
|
|
|
|
|
|
|
|
|
for (int i = 1; i < rthis.levels; ++i) |
|
|
|
|
{ |
|
|
|
|
cols_all[i] = (cols_all[i-1] + 1) / 2; |
|
|
|
|
rows_all[i] = (rows_all[i-1] + 1) / 2; |
|
|
|
|
cols_all_[0] = cols_; |
|
|
|
|
rows_all_[0] = rows_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type); |
|
|
|
|
void StereoBPImpl::calcBP(OutputArray disp, Stream& _stream) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::stereobp; |
|
|
|
|
|
|
|
|
|
data_step_down_callers[funcIdx](cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], cudaStream); |
|
|
|
|
} |
|
|
|
|
typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); |
|
|
|
|
static const data_step_down_t data_step_down_callers[2] = |
|
|
|
|
{ |
|
|
|
|
data_step_down_gpu<short>, data_step_down_gpu<float> |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
PtrStepSzb mus[] = {u, u2}; |
|
|
|
|
PtrStepSzb mds[] = {d, d2}; |
|
|
|
|
PtrStepSzb mrs[] = {r, r2}; |
|
|
|
|
PtrStepSzb mls[] = {l, l2}; |
|
|
|
|
typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); |
|
|
|
|
static const level_up_messages_t level_up_messages_callers[2] = |
|
|
|
|
{ |
|
|
|
|
level_up_messages_gpu<short>, level_up_messages_gpu<float> |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
int mem_idx = (rthis.levels & 1) ? 0 : 1; |
|
|
|
|
typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); |
|
|
|
|
static const calc_all_iterations_t calc_all_iterations_callers[2] = |
|
|
|
|
{ |
|
|
|
|
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float> |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
for (int i = rthis.levels - 1; i >= 0; --i) |
|
|
|
|
{ |
|
|
|
|
// for lower level we have already computed messages by setting to zero
|
|
|
|
|
if (i != rthis.levels - 1) |
|
|
|
|
level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream); |
|
|
|
|
typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream); |
|
|
|
|
static const output_t output_callers[2] = |
|
|
|
|
{ |
|
|
|
|
output_gpu<short>, output_gpu<float> |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream); |
|
|
|
|
const int funcIdx = msg_type_ == CV_32F; |
|
|
|
|
|
|
|
|
|
mem_idx = (mem_idx + 1) & 1; |
|
|
|
|
} |
|
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
|
|
|
|
|
|
if (disp.empty()) |
|
|
|
|
disp.create(rows, cols, CV_16S); |
|
|
|
|
for (int i = 1; i < levels_; ++i) |
|
|
|
|
{ |
|
|
|
|
cols_all_[i] = (cols_all_[i-1] + 1) / 2; |
|
|
|
|
rows_all_[i] = (rows_all_[i-1] + 1) / 2; |
|
|
|
|
|
|
|
|
|
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); |
|
|
|
|
datas_[i].create(rows_all_[i] * ndisp_, cols_all_[i], msg_type_); |
|
|
|
|
|
|
|
|
|
out.setTo(zero, stream); |
|
|
|
|
data_step_down_callers[funcIdx](cols_all_[i], rows_all_[i], rows_all_[i-1], datas_[i-1], datas_[i], stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream); |
|
|
|
|
PtrStepSzb mus[] = {u_, u2_}; |
|
|
|
|
PtrStepSzb mds[] = {d_, d2_}; |
|
|
|
|
PtrStepSzb mrs[] = {r_, r2_}; |
|
|
|
|
PtrStepSzb mls[] = {l_, l2_}; |
|
|
|
|
|
|
|
|
|
if (disp.type() != CV_16S) |
|
|
|
|
out.convertTo(disp, disp.type(), stream); |
|
|
|
|
} |
|
|
|
|
int mem_idx = (levels_ & 1) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
StereoBeliefPropagation& rthis; |
|
|
|
|
for (int i = levels_ - 1; i >= 0; --i) |
|
|
|
|
{ |
|
|
|
|
// for lower level we have already computed messages by setting to zero
|
|
|
|
|
if (i != levels_ - 1) |
|
|
|
|
level_up_messages_callers[funcIdx](mem_idx, cols_all_[i], rows_all_[i], rows_all_[i+1], mus, mds, mls, mrs, stream); |
|
|
|
|
|
|
|
|
|
calc_all_iterations_callers[funcIdx](cols_all_[i], rows_all_[i], iters_, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas_[i], stream); |
|
|
|
|
|
|
|
|
|
GpuMat& u; |
|
|
|
|
GpuMat& d; |
|
|
|
|
GpuMat& l; |
|
|
|
|
GpuMat& r; |
|
|
|
|
mem_idx = (mem_idx + 1) & 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
GpuMat& u2; |
|
|
|
|
GpuMat& d2; |
|
|
|
|
GpuMat& l2; |
|
|
|
|
GpuMat& r2; |
|
|
|
|
const int dtype = disp.fixedType() ? disp.type() : CV_16SC1; |
|
|
|
|
|
|
|
|
|
std::vector<GpuMat>& datas; |
|
|
|
|
GpuMat& out; |
|
|
|
|
disp.create(rows_, cols_, dtype); |
|
|
|
|
GpuMat out = disp.getGpuMat(); |
|
|
|
|
|
|
|
|
|
const Scalar zero; |
|
|
|
|
const float scale; |
|
|
|
|
if (dtype != CV_16SC1) |
|
|
|
|
{ |
|
|
|
|
outBuf_.create(rows_, cols_, CV_16SC1); |
|
|
|
|
out = outBuf_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int rows, cols; |
|
|
|
|
out.setTo(0, _stream); |
|
|
|
|
|
|
|
|
|
std::vector<int> cols_all, rows_all; |
|
|
|
|
}; |
|
|
|
|
output_callers[funcIdx](u_, d_, l_, r_, datas_.front(), out, stream); |
|
|
|
|
|
|
|
|
|
if (dtype != CV_16SC1) |
|
|
|
|
out.convertTo(disp, dtype, _stream); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) |
|
|
|
|
Ptr<gpu::StereoBeliefPropagation> cv::gpu::createStereoBeliefPropagation(int ndisp, int iters, int levels, int msg_type) |
|
|
|
|
{ |
|
|
|
|
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
|
|
|
|
impl(left, right, disp, stream); |
|
|
|
|
return new StereoBPImpl(ndisp, iters, levels, msg_type); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream) |
|
|
|
|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels) |
|
|
|
|
{ |
|
|
|
|
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
|
|
|
|
impl(data, disp, stream); |
|
|
|
|
ndisp = width / 4; |
|
|
|
|
if ((ndisp & 1) != 0) |
|
|
|
|
ndisp++; |
|
|
|
|
|
|
|
|
|
int mm = std::max(width, height); |
|
|
|
|
iters = mm / 100 + 2; |
|
|
|
|
|
|
|
|
|
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5; |
|
|
|
|
if (levels == 0) levels++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif /* !defined (HAVE_CUDA) */ |
|
|
|
|