|
|
|
@ -13,7 +13,6 @@ using namespace std; |
|
|
|
|
|
|
|
|
|
const size_t inWidth = 300; |
|
|
|
|
const size_t inHeight = 300; |
|
|
|
|
const float WHRatio = inWidth / (float)inHeight; |
|
|
|
|
const float inScaleFactor = 0.007843f; |
|
|
|
|
const float meanVal = 127.5; |
|
|
|
|
const char* classNames[] = {"background", |
|
|
|
@ -23,13 +22,6 @@ const char* classNames[] = {"background", |
|
|
|
|
"motorbike", "person", "pottedplant", |
|
|
|
|
"sheep", "sofa", "train", "tvmonitor"}; |
|
|
|
|
|
|
|
|
|
const char* about = "This sample uses MobileNet Single-Shot Detector " |
|
|
|
|
"(https://arxiv.org/abs/1704.04861) " |
|
|
|
|
"to detect objects on camera/video/image.\n" |
|
|
|
|
".caffemodel model's file is available here: " |
|
|
|
|
"https://github.com/chuanqi305/MobileNet-SSD\n" |
|
|
|
|
"Default network is 300x300 and 20-classes VOC.\n"; |
|
|
|
|
|
|
|
|
|
const char* params |
|
|
|
|
= "{ help | false | print usage }" |
|
|
|
|
"{ proto | MobileNetSSD_deploy.prototxt | model configuration }" |
|
|
|
@ -44,16 +36,22 @@ const char* params |
|
|
|
|
int main(int argc, char** argv) |
|
|
|
|
{ |
|
|
|
|
CommandLineParser parser(argc, argv, params); |
|
|
|
|
|
|
|
|
|
if (parser.get<bool>("help")) |
|
|
|
|
parser.about("This sample uses MobileNet Single-Shot Detector " |
|
|
|
|
"(https://arxiv.org/abs/1704.04861) " |
|
|
|
|
"to detect objects on camera/video/image.\n" |
|
|
|
|
".caffemodel model's file is available here: " |
|
|
|
|
"https://github.com/chuanqi305/MobileNet-SSD\n" |
|
|
|
|
"Default network is 300x300 and 20-classes VOC.\n"); |
|
|
|
|
|
|
|
|
|
if (parser.get<bool>("help") || argc == 1) |
|
|
|
|
{ |
|
|
|
|
cout << about << endl; |
|
|
|
|
parser.printMessage(); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
String modelConfiguration = parser.get<string>("proto"); |
|
|
|
|
String modelBinary = parser.get<string>("model"); |
|
|
|
|
CV_Assert(!modelConfiguration.empty() && !modelBinary.empty()); |
|
|
|
|
|
|
|
|
|
//! [Initialize network]
|
|
|
|
|
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
|
|
|
@ -75,7 +73,7 @@ int main(int argc, char** argv) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
VideoCapture cap; |
|
|
|
|
if (parser.get<String>("video").empty()) |
|
|
|
|
if (!parser.has("video")) |
|
|
|
|
{ |
|
|
|
|
int cameraDevice = parser.get<int>("camera_device"); |
|
|
|
|
cap = VideoCapture(cameraDevice); |
|
|
|
@ -95,32 +93,16 @@ int main(int argc, char** argv) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Size inVideoSize; |
|
|
|
|
inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size
|
|
|
|
|
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT)); |
|
|
|
|
|
|
|
|
|
Size cropSize; |
|
|
|
|
if (inVideoSize.width / (float)inVideoSize.height > WHRatio) |
|
|
|
|
{ |
|
|
|
|
cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio), |
|
|
|
|
inVideoSize.height); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cropSize = Size(inVideoSize.width, |
|
|
|
|
static_cast<int>(inVideoSize.width / WHRatio)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Rect crop(Point((inVideoSize.width - cropSize.width) / 2, |
|
|
|
|
(inVideoSize.height - cropSize.height) / 2), |
|
|
|
|
cropSize); |
|
|
|
|
//Acquire input size
|
|
|
|
|
Size inVideoSize((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), |
|
|
|
|
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT)); |
|
|
|
|
|
|
|
|
|
double fps = cap.get(CV_CAP_PROP_FPS); |
|
|
|
|
int fourcc = static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)); |
|
|
|
|
VideoWriter outputVideo; |
|
|
|
|
outputVideo.open(parser.get<String>("out") , |
|
|
|
|
(fourcc != 0 ? fourcc : VideoWriter::fourcc('M','J','P','G')), |
|
|
|
|
(fps != 0 ? fps : 10.0), cropSize, true); |
|
|
|
|
(fps != 0 ? fps : 10.0), inVideoSize, true); |
|
|
|
|
|
|
|
|
|
for(;;) |
|
|
|
|
{ |
|
|
|
@ -138,15 +120,17 @@ int main(int argc, char** argv) |
|
|
|
|
|
|
|
|
|
//! [Prepare blob]
|
|
|
|
|
Mat inputBlob = blobFromImage(frame, inScaleFactor, |
|
|
|
|
Size(inWidth, inHeight), meanVal, false); //Convert Mat to batch of images
|
|
|
|
|
Size(inWidth, inHeight), |
|
|
|
|
Scalar(meanVal, meanVal, meanVal), |
|
|
|
|
false, false); //Convert Mat to batch of images
|
|
|
|
|
//! [Prepare blob]
|
|
|
|
|
|
|
|
|
|
//! [Set input blob]
|
|
|
|
|
net.setInput(inputBlob, "data"); //set the network input
|
|
|
|
|
net.setInput(inputBlob); //set the network input
|
|
|
|
|
//! [Set input blob]
|
|
|
|
|
|
|
|
|
|
//! [Make forward pass]
|
|
|
|
|
Mat detection = net.forward("detection_out"); //compute output
|
|
|
|
|
Mat detection = net.forward(); //compute output
|
|
|
|
|
//! [Make forward pass]
|
|
|
|
|
|
|
|
|
|
vector<double> layersTimings; |
|
|
|
@ -155,13 +139,10 @@ int main(int argc, char** argv) |
|
|
|
|
|
|
|
|
|
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
|
|
|
|
|
|
|
|
|
frame = frame(crop); |
|
|
|
|
|
|
|
|
|
ostringstream ss; |
|
|
|
|
if (!outputVideo.isOpened()) |
|
|
|
|
{ |
|
|
|
|
ss << "FPS: " << 1000/time << " ; time: " << time << " ms"; |
|
|
|
|
putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255)); |
|
|
|
|
putText(frame, format("FPS: %.2f ; time: %.2f ms", 1000.f/time, time), |
|
|
|
|
Point(20,20), 0, 0.5, Scalar(0,0,255)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
cout << "Inference time, ms: " << time << endl; |
|
|
|
@ -175,27 +156,20 @@ int main(int argc, char** argv) |
|
|
|
|
{ |
|
|
|
|
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1)); |
|
|
|
|
|
|
|
|
|
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
|
|
|
|
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
|
|
|
|
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
|
|
|
|
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
|
|
|
|
|
|
|
|
|
ss.str(""); |
|
|
|
|
ss << confidence; |
|
|
|
|
String conf(ss.str()); |
|
|
|
|
|
|
|
|
|
Rect object((int)xLeftBottom, (int)yLeftBottom, |
|
|
|
|
(int)(xRightTop - xLeftBottom), |
|
|
|
|
(int)(yRightTop - yLeftBottom)); |
|
|
|
|
int left = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
|
|
|
|
int top = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
|
|
|
|
int right = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
|
|
|
|
int bottom = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
|
|
|
|
|
|
|
|
|
rectangle(frame, object, Scalar(0, 255, 0)); |
|
|
|
|
String label = String(classNames[objectClass]) + ": " + conf; |
|
|
|
|
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0)); |
|
|
|
|
String label = format("%s: %.2f", classNames[objectClass], confidence); |
|
|
|
|
int baseLine = 0; |
|
|
|
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
|
|
|
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
|
|
|
|
Size(labelSize.width, labelSize.height + baseLine)), |
|
|
|
|
top = max(top, labelSize.height); |
|
|
|
|
rectangle(frame, Point(left, top - labelSize.height), |
|
|
|
|
Point(left + labelSize.width, top + baseLine), |
|
|
|
|
Scalar(255, 255, 255), CV_FILLED); |
|
|
|
|
putText(frame, label, Point(xLeftBottom, yLeftBottom), |
|
|
|
|
putText(frame, label, Point(left, top), |
|
|
|
|
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|