mirror of https://github.com/opencv/opencv.git
parent
6042c59495
commit
d015bf6f5e
1 changed files with 76 additions and 0 deletions
@ -0,0 +1,76 @@ |
||||
''' |
||||
Robust line fitting. |
||||
================== |
||||
|
||||
Example of using cv2.fitLine function for fitting line to points in presence of outliers. |
||||
|
||||
Usage |
||||
----- |
||||
fitline.py |
||||
|
||||
Switch through different M-estimator functions and see, how well the robust functions |
||||
fit the line even in case of ~50% of outliers. |
||||
|
||||
Keys |
||||
---- |
||||
SPACE - generaty random points |
||||
f - change distance function |
||||
ESC - exit |
||||
''' |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
import itertools as it |
||||
from common import draw_str |
||||
|
||||
|
||||
w, h = 512, 256 |
||||
|
||||
def toint(p): |
||||
return tuple(map(int, p)) |
||||
|
||||
def sample_line(p1, p2, n, noise=0.0): |
||||
p1 = np.float32(p1) |
||||
t = np.random.rand(n,1) |
||||
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise |
||||
|
||||
dist_func_names = it.cycle('CV_DIST_L2 CV_DIST_L1 CV_DIST_L12 CV_DIST_FAIR CV_DIST_WELSCH CV_DIST_HUBER'.split()) |
||||
cur_func_name = dist_func_names.next() |
||||
|
||||
def update(_=None): |
||||
noise = cv2.getTrackbarPos('noise', 'fit line') |
||||
n = cv2.getTrackbarPos('point n', 'fit line') |
||||
r = cv2.getTrackbarPos('outlier %', 'fit line') / 100.0 |
||||
outn = int(n*r) |
||||
|
||||
p0, p1 = (90, 80), (w-90, h-80) |
||||
img = np.zeros((h, w, 3), np.uint8) |
||||
cv2.line(img, toint(p0), toint(p1), (0, 255, 0)) |
||||
|
||||
if n > 0: |
||||
line_points = sample_line(p0, p1, n-outn, noise) |
||||
outliers = np.random.rand(outn, 2) * (w, h) |
||||
points = np.vstack([line_points, outliers]) |
||||
for p in line_points: |
||||
cv2.circle(img, toint(p), 2, (255, 255, 255), -1) |
||||
for p in outliers: |
||||
cv2.circle(img, toint(p), 2, (64, 64, 255), -1) |
||||
func = getattr(cv2.cv, cur_func_name) |
||||
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01) |
||||
cv2.line(img, (int(cx-vx*w), int(cy-vy*w)), (int(cx+vx*w), int(cy+vy*w)), (0, 0, 255)) |
||||
|
||||
draw_str(img, (20, 20), cur_func_name) |
||||
cv2.imshow('fit line', img) |
||||
|
||||
if __name__ == '__main__': |
||||
cv2.namedWindow('fit line') |
||||
cv2.createTrackbar('noise', 'fit line', 3, 50, update) |
||||
cv2.createTrackbar('point n', 'fit line', 100, 500, update) |
||||
cv2.createTrackbar('outlier %', 'fit line', 30, 100, update) |
||||
while True: |
||||
update() |
||||
ch = cv2.waitKey(0) |
||||
if ch == ord('f'): |
||||
cur_func_name = dist_func_names.next() |
||||
if ch == 27: |
||||
break |
Loading…
Reference in new issue