diff --git a/cmake/OpenCVPCHSupport.cmake b/cmake/OpenCVPCHSupport.cmake index 0590793401..b36fa78ccd 100644 --- a/cmake/OpenCVPCHSupport.cmake +++ b/cmake/OpenCVPCHSupport.cmake @@ -302,7 +302,7 @@ MACRO(ADD_PRECOMPILED_HEADER _targetName _input) if [ -n \"$VERBOSE\" ]; then tail -n1 \$0 fi -${_command} -D$, -D> +${_command} '-D$,' '-D>' ") GET_FILENAME_COMPONENT(_outdir ${_output} PATH) ADD_CUSTOM_COMMAND( diff --git a/doc/py_tutorials/py_ml/py_svm/py_svm_opencv/py_svm_opencv.markdown b/doc/py_tutorials/py_ml/py_svm/py_svm_opencv/py_svm_opencv.markdown index dd034e9afa..fb59e984a1 100644 --- a/doc/py_tutorials/py_ml/py_svm/py_svm_opencv/py_svm_opencv.markdown +++ b/doc/py_tutorials/py_ml/py_svm/py_svm_opencv/py_svm_opencv.markdown @@ -47,7 +47,7 @@ area and try to implement them. Additional Resources -------------------- --# [Histograms of Oriented Gradients Video](www.youtube.com/watch?v=0Zib1YEE4LU‎) +-# [Histograms of Oriented Gradients Video](https://www.youtube.com/watch?v=0Zib1YEE4LU) Exercises --------- diff --git a/modules/core/include/opencv2/core/hal/intrin_avx.hpp b/modules/core/include/opencv2/core/hal/intrin_avx.hpp index 58db71467d..99271e9980 100644 --- a/modules/core/include/opencv2/core/hal/intrin_avx.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_avx.hpp @@ -431,19 +431,6 @@ inline v_float64x4 v_reinterpret_as_f64(const v_float64x4& a) inline v_float64x4 v_reinterpret_as_f64(const v_float32x8& a) { return v_float64x4(_mm256_castps_pd(a.val)); } -#if CV_FP16 -inline v_float32x8 v256_load_fp16_f32(const short* ptr) -{ - return v_float32x8(_mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)ptr))); -} - -inline void v_store_fp16(short* ptr, const v_float32x8& a) -{ - __m128i fp16_value = _mm256_cvtps_ph(a.val, 0); - _mm_store_si128((__m128i*)ptr, fp16_value); -} -#endif - /* Recombine */ /*#define OPENCV_HAL_IMPL_AVX_COMBINE(_Tpvec, perm) \ inline _Tpvec v_combine_low(const _Tpvec& a, const _Tpvec& b) \ @@ -1400,7 +1387,7 @@ inline v_float32x8 v_cvt_f32(const v_float64x4& a) inline v_float32x8 v_cvt_f32(const v_float64x4& a, const v_float64x4& b) { __m128 af = _mm256_cvtpd_ps(a.val), bf = _mm256_cvtpd_ps(b.val); - return v_float32x8(_mm256_insertf128_ps(_mm256_castps128_ps256(af), bf, 1)); + return v_float32x8(_v256_combine(af, bf)); } inline v_float64x4 v_cvt_f64(const v_int32x8& a) @@ -1474,7 +1461,7 @@ inline v_int32x8 v256_lut_pairs(const int* tab, const int* idx) } inline v_int32x8 v256_lut_quads(const int* tab, const int* idx) { - return v_int32x8(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_loadu_si128((const __m128i*)(tab + idx[0]))), _mm_loadu_si128((const __m128i*)(tab + idx[1])), 0x1)); + return v_int32x8(_v256_combine(_mm_loadu_si128((const __m128i*)(tab + idx[0])), _mm_loadu_si128((const __m128i*)(tab + idx[1])))); } inline v_uint32x8 v256_lut(const unsigned* tab, const int* idx) { return v_reinterpret_as_u32(v256_lut((const int *)tab, idx)); } inline v_uint32x8 v256_lut_pairs(const unsigned* tab, const int* idx) { return v_reinterpret_as_u32(v256_lut_pairs((const int *)tab, idx)); } @@ -1490,7 +1477,7 @@ inline v_int64x4 v256_lut(const int64* tab, const int* idx) } inline v_int64x4 v256_lut_pairs(const int64* tab, const int* idx) { - return v_int64x4(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_loadu_si128((const __m128i*)(tab + idx[0]))), _mm_loadu_si128((const __m128i*)(tab + idx[1])), 0x1)); + return v_int64x4(_v256_combine(_mm_loadu_si128((const __m128i*)(tab + idx[0])), _mm_loadu_si128((const __m128i*)(tab + idx[1])))); } inline v_uint64x4 v256_lut(const uint64* tab, const int* idx) { return v_reinterpret_as_u64(v256_lut((const int64 *)tab, idx)); } inline v_uint64x4 v256_lut_pairs(const uint64* tab, const int* idx) { return v_reinterpret_as_u64(v256_lut_pairs((const int64 *)tab, idx)); } @@ -1506,7 +1493,7 @@ inline v_float64x4 v256_lut(const double* tab, const int* idx) { return v_float64x4(_mm256_i32gather_pd(tab, _mm_loadu_si128((const __m128i*)idx), 8)); } -inline v_float64x4 v256_lut_pairs(const double* tab, const int* idx) { return v_float64x4(_mm256_insertf128_pd(_mm256_castpd128_pd256(_mm_loadu_pd(tab + idx[0])), _mm_loadu_pd(tab + idx[1]), 0x1)); } +inline v_float64x4 v256_lut_pairs(const double* tab, const int* idx) { return v_float64x4(_v256_combine(_mm_loadu_pd(tab + idx[0]), _mm_loadu_pd(tab + idx[1]))); } inline v_int32x8 v_lut(const int* tab, const v_int32x8& idxvec) { diff --git a/modules/core/include/opencv2/core/hal/intrin_neon.hpp b/modules/core/include/opencv2/core/hal/intrin_neon.hpp index 3b946ff7c6..c6da1b42d9 100644 --- a/modules/core/include/opencv2/core/hal/intrin_neon.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_neon.hpp @@ -278,48 +278,6 @@ struct v_float64x2 }; #endif -#if CV_FP16 -// Workaround for old compilers -static inline int16x4_t vreinterpret_s16_f16(float16x4_t a) { return (int16x4_t)a; } -static inline float16x4_t vreinterpret_f16_s16(int16x4_t a) { return (float16x4_t)a; } - -static inline float16x4_t cv_vld1_f16(const void* ptr) -{ -#ifndef vld1_f16 // APPLE compiler defines vld1_f16 as macro - return vreinterpret_f16_s16(vld1_s16((const short*)ptr)); -#else - return vld1_f16((const __fp16*)ptr); -#endif -} -static inline void cv_vst1_f16(void* ptr, float16x4_t a) -{ -#ifndef vst1_f16 // APPLE compiler defines vst1_f16 as macro - vst1_s16((short*)ptr, vreinterpret_s16_f16(a)); -#else - vst1_f16((__fp16*)ptr, a); -#endif -} - -#ifndef vdup_n_f16 - #define vdup_n_f16(v) (float16x4_t){v, v, v, v} -#endif - -#endif // CV_FP16 - -#if CV_FP16 -inline v_float32x4 v128_load_fp16_f32(const short* ptr) -{ - float16x4_t a = cv_vld1_f16((const __fp16*)ptr); - return v_float32x4(vcvt_f32_f16(a)); -} - -inline void v_store_fp16(short* ptr, const v_float32x4& a) -{ - float16x4_t fp16 = vcvt_f16_f32(a.val); - cv_vst1_f16((short*)ptr, fp16); -} -#endif - #define OPENCV_HAL_IMPL_NEON_INIT(_Tpv, _Tp, suffix) \ inline v_##_Tpv v_setzero_##suffix() { return v_##_Tpv(vdupq_n_##suffix((_Tp)0)); } \ inline v_##_Tpv v_setall_##suffix(_Tp v) { return v_##_Tpv(vdupq_n_##suffix(v)); } \ diff --git a/modules/core/include/opencv2/core/hal/intrin_sse.hpp b/modules/core/include/opencv2/core/hal/intrin_sse.hpp index a5adad04c5..003270787f 100644 --- a/modules/core/include/opencv2/core/hal/intrin_sse.hpp +++ b/modules/core/include/opencv2/core/hal/intrin_sse.hpp @@ -2684,19 +2684,6 @@ inline v_float64x2 v_cvt_f64_high(const v_float32x4& a) return v_float64x2(_mm_cvtps_pd(_mm_movehl_ps(a.val, a.val))); } -#if CV_FP16 -inline v_float32x4 v128_load_fp16_f32(const short* ptr) -{ - return v_float32x4(_mm_cvtph_ps(_mm_loadu_si128((const __m128i*)ptr))); -} - -inline void v_store_fp16(short* ptr, const v_float32x4& a) -{ - __m128i fp16_value = _mm_cvtps_ph(a.val, 0); - _mm_storel_epi64((__m128i*)ptr, fp16_value); -} -#endif - ////////////// Lookup table access //////////////////// inline v_int8x16 v_lut(const schar* tab, const int* idx) @@ -2956,6 +2943,9 @@ inline v_float32x4 v_pack_triplets(const v_float32x4& vec) { return vec; } inline v_float32x4 v_load_expand(const float16_t* ptr) { +#if CV_FP16 + return v_float32x4(_mm_cvtph_ps(_mm_loadu_si128((const __m128i*)ptr))); +#else const __m128i z = _mm_setzero_si128(), delta = _mm_set1_epi32(0x38000000); const __m128i signmask = _mm_set1_epi32(0x80000000), maxexp = _mm_set1_epi32(0x7c000000); const __m128 deltaf = _mm_castsi128_ps(_mm_set1_epi32(0x38800000)); @@ -2968,10 +2958,15 @@ inline v_float32x4 v_load_expand(const float16_t* ptr) __m128i zmask = _mm_cmpeq_epi32(e, z); __m128i ft = v_select_si128(zmask, zt, t); return v_float32x4(_mm_castsi128_ps(_mm_or_si128(ft, sign))); +#endif } inline void v_pack_store(float16_t* ptr, const v_float32x4& v) { +#if CV_FP16 + __m128i fp16_value = _mm_cvtps_ph(v.val, 0); + _mm_storel_epi64((__m128i*)ptr, fp16_value); +#else const __m128i signmask = _mm_set1_epi32(0x80000000); const __m128i rval = _mm_set1_epi32(0x3f000000); @@ -2993,6 +2988,7 @@ inline void v_pack_store(float16_t* ptr, const v_float32x4& v) t = _mm_or_si128(t, sign); t = _mm_packs_epi32(t, t); _mm_storel_epi64((__m128i*)ptr, t); +#endif } inline void v_cleanup() {} diff --git a/modules/core/src/directx.cpp b/modules/core/src/directx.cpp index f8b641d5cf..56ed26f6f2 100644 --- a/modules/core/src/directx.cpp +++ b/modules/core/src/directx.cpp @@ -256,6 +256,12 @@ Context& initializeContextFromD3D11Device(ID3D11Device* pD3D11Device) CV_Error(cv::Error::OpenCLInitError, "OpenCL: No available platforms"); std::vector platforms(numPlatforms); + status = clGetPlatformIDs(numPlatforms, &platforms[0], NULL); + if (status != CL_SUCCESS) + CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get platforms"); + + // TODO Filter platforms by name from OPENCV_OPENCL_DEVICE + size_t exts_len; cv::AutoBuffer extensions; bool is_support_cl_khr_d3d11_sharing = false; @@ -264,9 +270,6 @@ Context& initializeContextFromD3D11Device(ID3D11Device* pD3D11Device) #endif for (int i = 0; i < (int)numPlatforms; i++) { - status = clGetPlatformIDs(numPlatforms, &platforms[i], NULL); - if (status != CL_SUCCESS) - CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get number of platforms"); status = clGetPlatformInfo(platforms[i], CL_PLATFORM_EXTENSIONS, 0, NULL, &exts_len); if (status != CL_SUCCESS) CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get length of CL_PLATFORM_EXTENSIONS"); @@ -479,7 +482,7 @@ Context& initializeContextFromD3D10Device(ID3D10Device* pD3D10Device) std::vector platforms(numPlatforms); status = clGetPlatformIDs(numPlatforms, &platforms[0], NULL); if (status != CL_SUCCESS) - CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get number of platforms"); + CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get platforms"); // TODO Filter platforms by name from OPENCV_OPENCL_DEVICE @@ -587,7 +590,7 @@ Context& initializeContextFromDirect3DDevice9Ex(IDirect3DDevice9Ex* pDirect3DDev std::vector platforms(numPlatforms); status = clGetPlatformIDs(numPlatforms, &platforms[0], NULL); if (status != CL_SUCCESS) - CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get number of platforms"); + CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get platforms"); // TODO Filter platforms by name from OPENCV_OPENCL_DEVICE @@ -697,7 +700,7 @@ Context& initializeContextFromDirect3DDevice9(IDirect3DDevice9* pDirect3DDevice9 std::vector platforms(numPlatforms); status = clGetPlatformIDs(numPlatforms, &platforms[0], NULL); if (status != CL_SUCCESS) - CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get number of platforms"); + CV_Error(cv::Error::OpenCLInitError, "OpenCL: Can't get platforms"); // TODO Filter platforms by name from OPENCV_OPENCL_DEVICE diff --git a/modules/dnn/include/opencv2/dnn/dnn.hpp b/modules/dnn/include/opencv2/dnn/dnn.hpp index e38c1f14e1..02cc825cff 100644 --- a/modules/dnn/include/opencv2/dnn/dnn.hpp +++ b/modules/dnn/include/opencv2/dnn/dnn.hpp @@ -44,6 +44,9 @@ #include #include +#ifdef CV_CXX11 +#include +#endif #include "../dnn/version.hpp" @@ -57,6 +60,18 @@ CV__DNN_INLINE_NS_BEGIN typedef std::vector MatShape; +#if defined(CV_CXX11) || defined(CV_DOXYGEN) + typedef std::future AsyncMat; +#else + // Just a workaround for bindings. + struct AsyncMat + { + Mat get() { return Mat(); } + void wait() const {} + size_t wait_for(size_t milliseconds) const { CV_UNUSED(milliseconds); return -1; } + }; +#endif + /** * @brief Enum of computation backends supported by layers. * @see Net::setPreferableBackend @@ -68,7 +83,7 @@ CV__DNN_INLINE_NS_BEGIN //! DNN_BACKEND_OPENCV otherwise. DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, - DNN_BACKEND_INFERENCE_ENGINE, + DNN_BACKEND_INFERENCE_ENGINE, //!< Intel's Inference Engine computational backend. DNN_BACKEND_OPENCV, DNN_BACKEND_VKCOM }; @@ -84,8 +99,7 @@ CV__DNN_INLINE_NS_BEGIN DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD, DNN_TARGET_VULKAN, - //! FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin. - DNN_TARGET_FPGA + DNN_TARGET_FPGA //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin. }; CV_EXPORTS std::vector< std::pair > getAvailableBackends(); @@ -458,6 +472,15 @@ CV__DNN_INLINE_NS_BEGIN */ CV_WRAP Mat forward(const String& outputName = String()); + /** @brief Runs forward pass to compute output of layer with name @p outputName. + * @param outputName name for layer which output is needed to get + * @details By default runs forward pass for the whole network. + * + * This is an asynchronous version of forward(const String&). + * dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required. + */ + CV_WRAP AsyncMat forwardAsync(const String& outputName = String()); + /** @brief Runs forward pass to compute output of layer with name @p outputName. * @param outputBlobs contains all output blobs for specified layer. * @param outputName name for layer which output is needed to get diff --git a/modules/dnn/include/opencv2/dnn/version.hpp b/modules/dnn/include/opencv2/dnn/version.hpp index 8cd5d71de1..b7a6a3ffb3 100644 --- a/modules/dnn/include/opencv2/dnn/version.hpp +++ b/modules/dnn/include/opencv2/dnn/version.hpp @@ -6,7 +6,7 @@ #define OPENCV_DNN_VERSION_HPP /// Use with major OpenCV version only. -#define OPENCV_DNN_API_VERSION 20190412 +#define OPENCV_DNN_API_VERSION 20190422 #if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_INLINE_NS #define CV__DNN_INLINE_NS __CV_CAT(dnn4_v, OPENCV_DNN_API_VERSION) diff --git a/modules/dnn/misc/python/pyopencv_dnn.hpp b/modules/dnn/misc/python/pyopencv_dnn.hpp index 53cba74435..8e6d80302d 100644 --- a/modules/dnn/misc/python/pyopencv_dnn.hpp +++ b/modules/dnn/misc/python/pyopencv_dnn.hpp @@ -2,7 +2,13 @@ typedef dnn::DictValue LayerId; typedef std::vector vector_MatShape; typedef std::vector > vector_vector_MatShape; - +#ifdef CV_CXX11 +typedef std::chrono::milliseconds chrono_milliseconds; +typedef std::future_status AsyncMatStatus; +#else +typedef size_t chrono_milliseconds; +typedef size_t AsyncMatStatus; +#endif template<> bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name) @@ -40,6 +46,46 @@ bool pyopencv_to(PyObject *o, std::vector &blobs, const char *name) //requi return pyopencvVecConverter::to(o, blobs, ArgInfo(name, false)); } +#ifdef CV_CXX11 + +template<> +PyObject* pyopencv_from(const std::future& f_) +{ + std::future& f = const_cast&>(f_); + Ptr p(new std::future(std::move(f))); + return pyopencv_from(p); +} + +template<> +PyObject* pyopencv_from(const std::future_status& status) +{ + return pyopencv_from((int)status); +} + +template<> +bool pyopencv_to(PyObject* src, std::chrono::milliseconds& dst, const char* name) +{ + size_t millis = 0; + if (pyopencv_to(src, millis, name)) + { + dst = std::chrono::milliseconds(millis); + return true; + } + else + return false; +} + +#else + +template<> +PyObject* pyopencv_from(const cv::dnn::AsyncMat&) +{ + CV_Error(Error::StsNotImplemented, "C++11 is required."); + return 0; +} + +#endif // CV_CXX11 + template PyObject* pyopencv_from(const dnn::DictValue &dv) { diff --git a/modules/dnn/misc/python/shadow_async_mat.hpp b/modules/dnn/misc/python/shadow_async_mat.hpp new file mode 100644 index 0000000000..8807b8624b --- /dev/null +++ b/modules/dnn/misc/python/shadow_async_mat.hpp @@ -0,0 +1,22 @@ +#error This is a shadow header file, which is not intended for processing by any compiler. \ + Only bindings parser should handle this file. + +namespace cv { namespace dnn { + +class CV_EXPORTS_W AsyncMat +{ +public: + //! Wait for Mat object readiness and return it. + CV_WRAP Mat get(); + + //! Wait for Mat object readiness. + CV_WRAP void wait() const; + + /** @brief Wait for Mat object readiness specific amount of time. + * @param timeout Timeout in milliseconds + * @returns [std::future_status](https://en.cppreference.com/w/cpp/thread/future_status) + */ + CV_WRAP AsyncMatStatus wait_for(std::chrono::milliseconds timeout) const; +}; + +}} diff --git a/modules/dnn/misc/python/test/test_dnn.py b/modules/dnn/misc/python/test/test_dnn.py index 544ecbd20e..5cafbc531d 100644 --- a/modules/dnn/misc/python/test/test_dnn.py +++ b/modules/dnn/misc/python/test/test_dnn.py @@ -5,8 +5,8 @@ import numpy as np from tests_common import NewOpenCVTests, unittest -def normAssert(test, a, b, lInf=1e-5): - test.assertLess(np.max(np.abs(a - b)), lInf) +def normAssert(test, a, b, msg=None, lInf=1e-5): + test.assertLess(np.max(np.abs(a - b)), lInf, msg) def inter_area(box1, box2): x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2]) @@ -53,53 +53,6 @@ def normAssertDetections(test, ref, out, confThreshold=0.0, scores_diff=1e-5, bo if errMsg: test.fail(errMsg) - -# Returns a simple one-layer network created from Caffe's format -def getSimpleNet(): - prototxt = """ - name: "simpleNet" - input: "data" - layer { - type: "Identity" - name: "testLayer" - top: "testLayer" - bottom: "data" - } - """ - return cv.dnn.readNetFromCaffe(bytearray(prototxt, 'utf8')) - - -def testBackendAndTarget(backend, target): - net = getSimpleNet() - net.setPreferableBackend(backend) - net.setPreferableTarget(target) - inp = np.random.standard_normal([1, 2, 3, 4]).astype(np.float32) - try: - net.setInput(inp) - net.forward() - except BaseException as e: - return False - return True - - -haveInfEngine = testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU) -dnnBackendsAndTargets = [ - [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], -] - -if haveInfEngine: - dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU]) - if testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD): - dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD]) - -if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL(): - dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL]) - dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16]) - if haveInfEngine and cv.ocl_Device.getDefault().isIntel(): - dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL]) - dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16]) - - def printParams(backend, target): backendNames = { cv.dnn.DNN_BACKEND_OPENCV: 'OCV', @@ -116,8 +69,44 @@ def printParams(backend, target): class dnn_test(NewOpenCVTests): + def __init__(self, *args, **kwargs): + super(dnn_test, self).__init__(*args, **kwargs) + self.dnnBackendsAndTargets = [ + [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], + ] + + if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU): + self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU]) + if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD): + self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD]) + + if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL(): + self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL]) + self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16]) + if cv.ocl_Device.getDefault().isIntel(): + if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL): + self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL]) + if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16): + self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16]) + def find_dnn_file(self, filename, required=True): - return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd())], required=required) + return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()), + os.environ['OPENCV_TEST_DATA_PATH']], + required=required) + + def checkIETarget(self, backend, target): + proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt', required=True) + model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel', required=True) + net = cv.dnn.readNet(proto, model) + net.setPreferableBackend(backend) + net.setPreferableTarget(target) + inp = np.random.standard_normal([1, 2, 10, 11]).astype(np.float32) + try: + net.setInput(inp) + net.forward() + except BaseException as e: + return False + return True def test_blobFromImage(self): np.random.seed(324) @@ -148,7 +137,7 @@ class dnn_test(NewOpenCVTests): def test_face_detection(self): testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False)) - proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt2', required=testdata_required) + proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt', required=testdata_required) model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=testdata_required) if proto is None or model is None: raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") @@ -164,7 +153,7 @@ class dnn_test(NewOpenCVTests): [0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801]] print('\n') - for backend, target in dnnBackendsAndTargets: + for backend, target in self.dnnBackendsAndTargets: printParams(backend, target) net = cv.dnn.readNet(proto, model) @@ -178,5 +167,52 @@ class dnn_test(NewOpenCVTests): normAssertDetections(self, ref, out, 0.5, scoresDiff, iouDiff) + def test_async(self): + timeout = 5000 # in milliseconds + testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False)) + proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt', required=testdata_required) + model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel', required=testdata_required) + if proto is None or model is None: + raise unittest.SkipTest("Missing DNN test files (dnn/layers/layer_convolution.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") + + print('\n') + for backend, target in self.dnnBackendsAndTargets: + if backend != cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: + continue + + printParams(backend, target) + + netSync = cv.dnn.readNet(proto, model) + netSync.setPreferableBackend(backend) + netSync.setPreferableTarget(target) + + netAsync = cv.dnn.readNet(proto, model) + netAsync.setPreferableBackend(backend) + netAsync.setPreferableTarget(target) + + # Generate inputs + numInputs = 10 + inputs = [] + for _ in range(numInputs): + inputs.append(np.random.standard_normal([2, 6, 75, 113]).astype(np.float32)) + + # Run synchronously + refs = [] + for i in range(numInputs): + netSync.setInput(inputs[i]) + refs.append(netSync.forward()) + + # Run asynchronously. To make test more robust, process inputs in the reversed order. + outs = [] + for i in reversed(range(numInputs)): + netAsync.setInput(inputs[i]) + outs.insert(0, netAsync.forwardAsync()) + + for i in reversed(range(numInputs)): + if outs[i].wait_for(timeout) == 1: + self.fail("Timeout") + normAssert(self, refs[i], outs[i].get(), 'Index: %d' % i, 1e-10) + + if __name__ == '__main__': NewOpenCVTests.bootstrap() diff --git a/modules/dnn/src/dnn.cpp b/modules/dnn/src/dnn.cpp index c0366cded8..c52dcf5ff9 100644 --- a/modules/dnn/src/dnn.cpp +++ b/modules/dnn/src/dnn.cpp @@ -1043,6 +1043,7 @@ struct Net::Impl lastLayerId = 0; netWasAllocated = false; fusion = true; + isAsync = false; preferableBackend = DNN_BACKEND_DEFAULT; preferableTarget = DNN_TARGET_CPU; skipInfEngineInit = false; @@ -1064,6 +1065,7 @@ struct Net::Impl bool netWasAllocated; bool fusion; + bool isAsync; std::vector layersTimings; Mat output_blob; @@ -2321,6 +2323,9 @@ struct Net::Impl std::map >::iterator it = ld.backendNodes.find(preferableBackend); if (preferableBackend == DNN_BACKEND_OPENCV || it == ld.backendNodes.end() || it->second.empty()) { + if (isAsync) + CV_Error(Error::StsNotImplemented, "Default implementation fallbacks in asynchronous mode"); + if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget)) { std::vector umat_inputBlobs = OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers); @@ -2476,7 +2481,7 @@ struct Net::Impl } else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE) { - forwardInfEngine(node); + forwardInfEngine(ld.outputBlobsWrappers, node, isAsync); } else if (preferableBackend == DNN_BACKEND_VKCOM) { @@ -2535,15 +2540,6 @@ struct Net::Impl forwardLayer(ld); } - void forwardAll() - { - CV_TRACE_FUNCTION(); - - MapIdToLayerData::reverse_iterator last_layer = layers.rbegin(); - CV_Assert(last_layer != layers.rend()); - forwardToLayer(last_layer->second, true); - } - void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes) { std::vector& inputLayerIds = layers[id].inputBlobsId; @@ -2634,6 +2630,42 @@ struct Net::Impl { return getBlob(getPinByAlias(outputName)); } + +#ifdef CV_CXX11 + std::future getBlobAsync(const LayerPin& pin) + { + CV_TRACE_FUNCTION(); +#ifdef HAVE_INF_ENGINE + if (!pin.valid()) + CV_Error(Error::StsObjectNotFound, "Requested blob not found"); + + LayerData &ld = layers[pin.lid]; + if ((size_t)pin.oid >= ld.outputBlobs.size()) + { + CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %d outputs, " + "the #%d was requested", ld.name.c_str(), + (int)ld.outputBlobs.size(), (int)pin.oid)); + } + if (preferableTarget != DNN_TARGET_CPU) + { + CV_Assert(!ld.outputBlobsWrappers.empty() && !ld.outputBlobsWrappers[pin.oid].empty()); + // Transfer data to CPU if it's require. + ld.outputBlobsWrappers[pin.oid]->copyToHost(); + } + CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE); + + Ptr wrapper = ld.outputBlobsWrappers[pin.oid].dynamicCast(); + return std::move(wrapper->futureMat); +#else + CV_Error(Error::StsNotImplemented, "DNN_BACKEND_INFERENCE_ENGINE backend is required"); +#endif + } + + std::future getBlobAsync(String outputName) + { + return getBlobAsync(getPinByAlias(outputName)); + } +#endif // CV_CXX11 }; Net::Net() : impl(new Net::Impl) @@ -2757,6 +2789,31 @@ Mat Net::forward(const String& outputName) return impl->getBlob(layerName); } +AsyncMat Net::forwardAsync(const String& outputName) +{ + CV_TRACE_FUNCTION(); +#ifdef CV_CXX11 + if (impl->preferableBackend != DNN_BACKEND_INFERENCE_ENGINE) + CV_Error(Error::StsNotImplemented, "Asynchronous forward for backend which is different from DNN_BACKEND_INFERENCE_ENGINE"); + + String layerName = outputName; + + if (layerName.empty()) + layerName = getLayerNames().back(); + + std::vector pins(1, impl->getPinByAlias(layerName)); + impl->setUpNet(pins); + + impl->isAsync = true; + impl->forwardToLayer(impl->getLayerData(layerName)); + impl->isAsync = false; + + return impl->getBlobAsync(layerName); +#else + CV_Error(Error::StsNotImplemented, "Asynchronous forward without C++11"); +#endif // CV_CXX11 +} + void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName) { CV_TRACE_FUNCTION(); diff --git a/modules/dnn/src/onnx/onnx_importer.cpp b/modules/dnn/src/onnx/onnx_importer.cpp index 26228af5b1..142e16522d 100644 --- a/modules/dnn/src/onnx/onnx_importer.cpp +++ b/modules/dnn/src/onnx/onnx_importer.cpp @@ -140,9 +140,10 @@ Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto) return blob; } -void runLayer(Ptr layer, const std::vector& inputs, +void runLayer(LayerParams& params, const std::vector& inputs, std::vector& outputs) { + Ptr layer = LayerFactory::createLayerInstance(params.type, params); std::vector inpShapes(inputs.size()); int ddepth = CV_32F; for (size_t i = 0; i < inputs.size(); ++i) @@ -669,14 +670,15 @@ void ONNXImporter::populateNet(Net dstNet) Mat blob = getBlob(node_proto, constBlobs, 1); CV_Assert(blob.type() == CV_32SC1); + layerParams.set("dim", DictValue::arrayInt( + blob.ptr(), blob.total() )); + if (layer_id.find(node_proto.input(0)) == layer_id.end()) { - Mat input = getBlob(node_proto, constBlobs, 0); - Mat out = input.reshape(0, static_cast >(blob)); - constBlobs.insert(std::make_pair(layerParams.name, out)); + std::vector inputs(1, getBlob(node_proto, constBlobs, 0)), outputs; + runLayer(layerParams, inputs, outputs); + constBlobs.insert(std::make_pair(layerParams.name, outputs[0])); continue; } - layerParams.set("dim", DictValue::arrayInt( - blob.ptr(), blob.total() )); } else { DictValue shape = layerParams.get("shape"); @@ -749,8 +751,7 @@ void ONNXImporter::populateNet(Net dstNet) { inputs[i] = getBlob(node_proto, constBlobs, i); } - Ptr concat = ConcatLayer::create(layerParams); - runLayer(concat, inputs, concatenated); + runLayer(layerParams, inputs, concatenated); CV_Assert(concatenated.size() == 1); constBlobs.insert(std::make_pair(layerParams.name, concatenated[0])); diff --git a/modules/dnn/src/op_inf_engine.cpp b/modules/dnn/src/op_inf_engine.cpp index b9cebe3b0c..c87ed4f359 100644 --- a/modules/dnn/src/op_inf_engine.cpp +++ b/modules/dnn/src/op_inf_engine.cpp @@ -168,7 +168,6 @@ void InfEngineBackendNet::init(int targetId) const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); - inpBlobs[name] = blobIt->second; it.second->setPrecision(blobIt->second->precision()); } for (const auto& it : cnn.getOutputsInfo()) @@ -176,7 +175,6 @@ void InfEngineBackendNet::init(int targetId) const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); - outBlobs[name] = blobIt->second; it.second->setPrecision(blobIt->second->precision()); // Should be always FP32 } @@ -288,6 +286,24 @@ InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::La return wrapToInfEngineBlob(m, reversedShape, layout); } +InferenceEngine::Blob::Ptr cloneBlob(const InferenceEngine::Blob::Ptr& blob) +{ + InferenceEngine::Precision precision = blob->precision(); + InferenceEngine::Blob::Ptr copy; + if (precision == InferenceEngine::Precision::FP32) + { + copy = InferenceEngine::make_shared_blob(precision, blob->layout(), blob->dims()); + } + else if (precision == InferenceEngine::Precision::U8) + { + copy = InferenceEngine::make_shared_blob(precision, blob->layout(), blob->dims()); + } + else + CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); + copy->allocate(); + return copy; +} + InferenceEngine::DataPtr infEngineDataNode(const Ptr& ptr) { CV_Assert(!ptr.empty()); @@ -800,9 +816,6 @@ void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net) plugin = InferenceEngine::InferencePlugin(enginePtr); netExec = plugin.LoadNetwork(net, {}); - infRequest = netExec.CreateInferRequest(); - infRequest.SetInput(inpBlobs); - infRequest.SetOutput(outBlobs); } catch (const std::exception& ex) { @@ -828,9 +841,116 @@ void InfEngineBackendNet::addBlobs(const std::vector >& ptrs } } -void InfEngineBackendNet::forward() +void InfEngineBackendNet::InfEngineReqWrapper::makePromises(const std::vector >& outsWrappers) +{ + auto outs = infEngineWrappers(outsWrappers); + outProms.clear(); + outProms.resize(outs.size()); + outsNames.resize(outs.size()); + for (int i = 0; i < outs.size(); ++i) + { + outs[i]->futureMat = outProms[i].get_future(); + outsNames[i] = outs[i]->dataPtr->name; + } +} + +void InfEngineBackendNet::forward(const std::vector >& outBlobsWrappers, + bool isAsync) { - infRequest.Infer(); + // Look for finished requests. + Ptr reqWrapper; + for (auto& wrapper : infRequests) + { + if (wrapper->isReady) + { + reqWrapper = wrapper; + break; + } + } + if (reqWrapper.empty()) + { + reqWrapper = Ptr(new InfEngineReqWrapper()); + try + { + reqWrapper->req = netExec.CreateInferRequest(); + } + catch (const std::exception& ex) + { + CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); + } + infRequests.push_back(reqWrapper); + + InferenceEngine::BlobMap inpBlobs, outBlobs; + for (const auto& it : cnn.getInputsInfo()) + { + const std::string& name = it.first; + auto blobIt = allBlobs.find(name); + CV_Assert(blobIt != allBlobs.end()); + inpBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second; + } + for (const auto& it : cnn.getOutputsInfo()) + { + const std::string& name = it.first; + auto blobIt = allBlobs.find(name); + CV_Assert(blobIt != allBlobs.end()); + outBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second; + } + reqWrapper->req.SetInput(inpBlobs); + reqWrapper->req.SetOutput(outBlobs); + + InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req; + infRequestPtr->SetUserData(reqWrapper.get(), 0); + + infRequestPtr->SetCompletionCallback({ + [](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status) + { + InfEngineReqWrapper* wrapper; + request->GetUserData((void**)&wrapper, 0); + CV_Assert(wrapper); + + for (int i = 0; i < wrapper->outProms.size(); ++i) + { + const std::string& name = wrapper->outsNames[i]; + Mat m = infEngineBlobToMat(wrapper->req.GetBlob(name)); + + if (status == InferenceEngine::StatusCode::OK) + wrapper->outProms[i].set_value(m.clone()); + else + { + try { + std::runtime_error e("Async request failed"); + wrapper->outProms[i].set_exception(std::make_exception_ptr(e)); + } catch(...) { + CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation"); + } + } + } + wrapper->isReady = true; + } + }); + } + if (isAsync) + { + // Copy actual data to infer request's input blobs. + for (const auto& it : cnn.getInputsInfo()) + { + const std::string& name = it.first; + auto blobIt = allBlobs.find(name); + Mat srcMat = infEngineBlobToMat(blobIt->second); + Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name)); + srcMat.copyTo(dstMat); + } + + // Set promises to output blobs wrappers. + reqWrapper->makePromises(outBlobsWrappers); + + reqWrapper->isReady = false; + reqWrapper->req.StartAsync(); + } + else + { + reqWrapper->req.Infer(); + } } Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) @@ -920,14 +1040,15 @@ bool haveInfEngine() #endif // HAVE_INF_ENGINE } -void forwardInfEngine(Ptr& node) +void forwardInfEngine(const std::vector >& outBlobsWrappers, + Ptr& node, bool isAsync) { CV_Assert(haveInfEngine()); #ifdef HAVE_INF_ENGINE CV_Assert(!node.empty()); Ptr ieNode = node.dynamicCast(); CV_Assert(!ieNode.empty()); - ieNode->net->forward(); + ieNode->net->forward(outBlobsWrappers, isAsync); #endif // HAVE_INF_ENGINE } diff --git a/modules/dnn/src/op_inf_engine.hpp b/modules/dnn/src/op_inf_engine.hpp index 8e16236469..bb424a46d3 100644 --- a/modules/dnn/src/op_inf_engine.hpp +++ b/modules/dnn/src/op_inf_engine.hpp @@ -185,7 +185,8 @@ public: void init(int targetId); - void forward(); + void forward(const std::vector >& outBlobsWrappers, + bool isAsync); void initPlugin(InferenceEngine::ICNNNetwork& net); @@ -197,12 +198,23 @@ private: InferenceEngine::InferenceEnginePluginPtr enginePtr; InferenceEngine::InferencePlugin plugin; InferenceEngine::ExecutableNetwork netExec; - InferenceEngine::InferRequest infRequest; InferenceEngine::BlobMap allBlobs; - InferenceEngine::BlobMap inpBlobs; - InferenceEngine::BlobMap outBlobs; InferenceEngine::TargetDevice targetDevice; + struct InfEngineReqWrapper + { + InfEngineReqWrapper() : isReady(true) {} + + void makePromises(const std::vector >& outs); + + InferenceEngine::InferRequest req; + std::vector > outProms; + std::vector outsNames; + bool isReady; + }; + + std::vector > infRequests; + InferenceEngine::CNNNetwork cnn; bool hasNetOwner; @@ -252,6 +264,7 @@ public: InferenceEngine::DataPtr dataPtr; InferenceEngine::Blob::Ptr blob; + std::future futureMat; }; InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout = InferenceEngine::Layout::ANY); @@ -302,7 +315,8 @@ CV__DNN_INLINE_NS_END bool haveInfEngine(); -void forwardInfEngine(Ptr& node); +void forwardInfEngine(const std::vector >& outBlobsWrappers, + Ptr& node, bool isAsync); }} // namespace dnn, namespace cv diff --git a/modules/dnn/test/test_misc.cpp b/modules/dnn/test/test_misc.cpp index 60e3313048..7dad46d331 100644 --- a/modules/dnn/test/test_misc.cpp +++ b/modules/dnn/test/test_misc.cpp @@ -342,4 +342,106 @@ TEST(Net, forwardAndRetrieve) normAssert(outBlobs[0][1], inp.rowRange(2, 4), "second part"); } +#ifdef HAVE_INF_ENGINE +// This test runs network in synchronous mode for different inputs and then +// runs the same model asynchronously for the same inputs. +typedef testing::TestWithParam Async; +TEST_P(Async, set_and_forward_single) +{ + static const int kTimeout = 5000; // in milliseconds. + const int target = GetParam(); + + const std::string suffix = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "_fp16" : ""; + const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin"); + const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml"); + + Net netSync = readNet(model, proto); + netSync.setPreferableTarget(target); + + Net netAsync = readNet(model, proto); + netAsync.setPreferableTarget(target); + + // Generate inputs. + const int numInputs = 10; + std::vector inputs(numInputs); + int blobSize[] = {2, 6, 75, 113}; + for (int i = 0; i < numInputs; ++i) + { + inputs[i].create(4, &blobSize[0], CV_32FC1); + randu(inputs[i], 0.0f, 1.0f); + } + + // Run synchronously. + std::vector refs(numInputs); + for (int i = 0; i < numInputs; ++i) + { + netSync.setInput(inputs[i]); + refs[i] = netSync.forward().clone(); + } + + // Run asynchronously. To make test more robust, process inputs in the reversed order. + for (int i = numInputs - 1; i >= 0; --i) + { + netAsync.setInput(inputs[i]); + + std::future out = netAsync.forwardAsync(); + if (out.wait_for(std::chrono::milliseconds(kTimeout)) == std::future_status::timeout) + CV_Error(Error::StsAssert, "Timeout"); + normAssert(refs[i], out.get(), format("Index: %d", i).c_str(), 0, 0); + } +} + +TEST_P(Async, set_and_forward_all) +{ + static const int kTimeout = 5000; // in milliseconds. + const int target = GetParam(); + + const std::string suffix = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "_fp16" : ""; + const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin"); + const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml"); + + + Net netSync = readNet(model, proto); + netSync.setPreferableTarget(target); + + Net netAsync = readNet(model, proto); + netAsync.setPreferableTarget(target); + + // Generate inputs. + const int numInputs = 10; + std::vector inputs(numInputs); + int blobSize[] = {2, 6, 75, 113}; + for (int i = 0; i < numInputs; ++i) + { + inputs[i].create(4, &blobSize[0], CV_32FC1); + randu(inputs[i], 0.0f, 1.0f); + } + + // Run synchronously. + std::vector refs(numInputs); + for (int i = 0; i < numInputs; ++i) + { + netSync.setInput(inputs[i]); + refs[i] = netSync.forward().clone(); + } + + // Run asynchronously. To make test more robust, process inputs in the reversed order. + std::vector > outs(numInputs); + for (int i = numInputs - 1; i >= 0; --i) + { + netAsync.setInput(inputs[i]); + outs[i] = netAsync.forwardAsync(); + } + + for (int i = numInputs - 1; i >= 0; --i) + { + if (outs[i].wait_for(std::chrono::milliseconds(kTimeout)) == std::future_status::timeout) + CV_Error(Error::StsAssert, "Timeout"); + normAssert(refs[i], outs[i].get(), format("Index: %d", i).c_str(), 0, 0); + } +} + +INSTANTIATE_TEST_CASE_P(/**/, Async, testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE))); +#endif // HAVE_INF_ENGINE + }} // namespace diff --git a/modules/imgproc/include/opencv2/imgproc.hpp b/modules/imgproc/include/opencv2/imgproc.hpp index 26fbbbdb12..b2a7b17269 100644 --- a/modules/imgproc/include/opencv2/imgproc.hpp +++ b/modules/imgproc/include/opencv2/imgproc.hpp @@ -892,52 +892,52 @@ class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough { public: //! Angle difference in degrees between two points in feature. - virtual void setXi(double xi) = 0; - virtual double getXi() const = 0; + CV_WRAP virtual void setXi(double xi) = 0; + CV_WRAP virtual double getXi() const = 0; //! Feature table levels. - virtual void setLevels(int levels) = 0; - virtual int getLevels() const = 0; + CV_WRAP virtual void setLevels(int levels) = 0; + CV_WRAP virtual int getLevels() const = 0; //! Maximal difference between angles that treated as equal. - virtual void setAngleEpsilon(double angleEpsilon) = 0; - virtual double getAngleEpsilon() const = 0; + CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0; + CV_WRAP virtual double getAngleEpsilon() const = 0; //! Minimal rotation angle to detect in degrees. - virtual void setMinAngle(double minAngle) = 0; - virtual double getMinAngle() const = 0; + CV_WRAP virtual void setMinAngle(double minAngle) = 0; + CV_WRAP virtual double getMinAngle() const = 0; //! Maximal rotation angle to detect in degrees. - virtual void setMaxAngle(double maxAngle) = 0; - virtual double getMaxAngle() const = 0; + CV_WRAP virtual void setMaxAngle(double maxAngle) = 0; + CV_WRAP virtual double getMaxAngle() const = 0; //! Angle step in degrees. - virtual void setAngleStep(double angleStep) = 0; - virtual double getAngleStep() const = 0; + CV_WRAP virtual void setAngleStep(double angleStep) = 0; + CV_WRAP virtual double getAngleStep() const = 0; //! Angle votes threshold. - virtual void setAngleThresh(int angleThresh) = 0; - virtual int getAngleThresh() const = 0; + CV_WRAP virtual void setAngleThresh(int angleThresh) = 0; + CV_WRAP virtual int getAngleThresh() const = 0; //! Minimal scale to detect. - virtual void setMinScale(double minScale) = 0; - virtual double getMinScale() const = 0; + CV_WRAP virtual void setMinScale(double minScale) = 0; + CV_WRAP virtual double getMinScale() const = 0; //! Maximal scale to detect. - virtual void setMaxScale(double maxScale) = 0; - virtual double getMaxScale() const = 0; + CV_WRAP virtual void setMaxScale(double maxScale) = 0; + CV_WRAP virtual double getMaxScale() const = 0; //! Scale step. - virtual void setScaleStep(double scaleStep) = 0; - virtual double getScaleStep() const = 0; + CV_WRAP virtual void setScaleStep(double scaleStep) = 0; + CV_WRAP virtual double getScaleStep() const = 0; //! Scale votes threshold. - virtual void setScaleThresh(int scaleThresh) = 0; - virtual int getScaleThresh() const = 0; + CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0; + CV_WRAP virtual int getScaleThresh() const = 0; //! Position votes threshold. - virtual void setPosThresh(int posThresh) = 0; - virtual int getPosThresh() const = 0; + CV_WRAP virtual void setPosThresh(int posThresh) = 0; + CV_WRAP virtual int getPosThresh() const = 0; }; //! @} imgproc_shape @@ -4175,11 +4175,11 @@ CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const R /** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it. */ -CV_EXPORTS Ptr createGeneralizedHoughBallard(); +CV_EXPORTS_W Ptr createGeneralizedHoughBallard(); /** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it. */ -CV_EXPORTS Ptr createGeneralizedHoughGuil(); +CV_EXPORTS_W Ptr createGeneralizedHoughGuil(); //! @} imgproc_shape